Properties

Label 2.0.2491.1-4.1-c1
Base field \(\Q(\sqrt{-2491}) \)
Conductor norm \( 4 \)
CM no
Base change no
Q-curve yes
Torsion order \( 1 \)
Rank not available

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field \(\Q(\sqrt{-2491}) \)

Generator \(a\), with minimal polynomial \( x^{2} - x + 623 \); class number \(12\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([623, -1, 1]))
 
Copy content gp:K = nfinit(Polrev([623, -1, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![623, -1, 1]);
 

Weierstrass equation

\({y}^2+\left(a+1\right){x}{y}={x}^3+\left(-a-1\right){x}^2+\left(20a+8145\right){x}-291a-142791\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([1,1]),K([-1,-1]),K([0,0]),K([8145,20]),K([-142791,-291])])
 
Copy content gp:E = ellinit([Polrev([1,1]),Polrev([-1,-1]),Polrev([0,0]),Polrev([8145,20]),Polrev([-142791,-291])], K);
 
Copy content magma:E := EllipticCurve([K![1,1],K![-1,-1],K![0,0],K![8145,20],K![-142791,-291]]);
 

This is not a global minimal model: it is minimal at all primes except \((5,a+1)\). No global minimal model exists.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

Not computed ($ 0 \le r \le 1 $)

Invariants

Conductor: $\frak{N}$ = \((2)\) = \((2)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 4 \) = \(4\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $80740352a+326500352$
Discriminant ideal: $(\Delta)$ = \((80740352a+326500352)\) = \((2)^{17}\cdot(5,a+1)^{12}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\Delta)$ = \( 4194304000000000000 \) = \(4^{17}\cdot5^{12}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
Minimal discriminant: $\frak{D}_{\mathrm{min}}$ = \((131072)\) = \((2)^{17}\)
Minimal discriminant norm: $N(\frak{D}_{\mathrm{min}})$ = \( 17179869184 \) = \(4^{17}\)
j-invariant: $j$ = \( -\frac{25153757}{131072} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 1 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r?$   \(0 \le r \le 1\)
Regulator: $\mathrm{Reg}(E/K)$ not available
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ not available
Global period: $\Omega(E/K)$ \( 7.7982180460166276079094734025084930424 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 1 \)  =  \(1\cdot1\)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(1\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 1.6264591614019008371606670768193544162 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= not available

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction. Primes of good reduction for the curve but which divide the discriminant of the model above (if any) are included.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((2)\) \(4\) \(1\) \(I_{17}\) Non-split multiplicative \(1\) \(1\) \(17\) \(17\)
\((5,a+1)\) \(5\) \(1\) \(I_0\) Good \(1\) \(0\) \(0\) \(0\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) .

Isogenies and isogeny class

This curve has no rational isogenies. Its isogeny class 4.1-c consists of this curve only.

Base change

This elliptic curve is a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.