Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 3000 over imaginary quadratic fields with absolute discriminant 23

Note: The completeness Only modular elliptic curves are included

Refine search


Results (26 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
108.6-a1 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( \frac{114244921}{432} a - \frac{21056689}{108} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 45 a + 174\) , \( 461 a - 1226\bigr] \) ${y}^2+{x}{y}={x}^3+\left(a-1\right){x}^2+\left(45a+174\right){x}+461a-1226$
108.6-a2 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.209276533$ 2.017212702 \( \frac{32836083791}{4251528} a - \frac{26111762207}{708588} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( 34 a - 252\) , \( -340 a + 1624\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(34a-252\right){x}-340a+1624$
108.6-a3 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.209276533$ 2.017212702 \( -\frac{32836083791}{4251528} a - \frac{123834489451}{4251528} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 12 a - 63\) , \( -74 a + 161\bigr] \) ${y}^2+{x}{y}={x}^3+\left(a-1\right){x}^2+\left(12a-63\right){x}-74a+161$
108.6-a4 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( \frac{8592493}{46656} a - \frac{398467}{7776} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -6 a - 12\) , \( -28 a + 40\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(-6a-12\right){x}-28a+40$
108.6-a5 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( -\frac{8592493}{46656} a + \frac{6201691}{46656} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 2 a - 3\) , \( 5\bigr] \) ${y}^2+{x}{y}={x}^3+\left(a-1\right){x}^2+\left(2a-3\right){x}+5$
108.6-a6 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( \frac{250499417}{110592} a + \frac{273138433}{110592} \) \( \bigl[a\) , \( 0\) , \( 0\) , \( -14 a + 36\) , \( 26 a + 76\bigr] \) ${y}^2+a{x}{y}={x}^3+\left(-14a+36\right){x}+26a+76$
108.6-a7 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( -\frac{250499417}{110592} a + \frac{87272975}{18432} \) \( \bigl[1\) , \( a - 1\) , \( 0\) , \( 9\) , \( -2 a - 1\bigr] \) ${y}^2+{x}{y}={x}^3+\left(a-1\right){x}^2+9{x}-2a-1$
108.6-a8 108.6-a \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $2.418553067$ 2.017212702 \( -\frac{114244921}{432} a + \frac{10006055}{144} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 38 a - 57\) , \( -193 a - 129\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^3+\left(a-1\right){x}^2+\left(38a-57\right){x}-193a-129$
108.6-b1 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.273865281$ $1.065785020$ 1.947568094 \( \frac{69084352753}{104976} a - \frac{1402170891281}{34992} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -23 a + 894\) , \( -3847 a + 802\bigr] \) ${y}^2+a{x}{y}={x}^3+a{x}^2+\left(-23a+894\right){x}-3847a+802$
108.6-b2 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.547730562$ $1.065785020$ 1.947568094 \( -\frac{69084352753}{104976} a - \frac{2068714160545}{52488} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -63 a + 190\) , \( 193 a + 871\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(-a-1\right){x}^2+\left(-63a+190\right){x}+193a+871$
108.6-b3 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.136932640$ $2.131570041$ 1.947568094 \( \frac{54256267}{20736} a - \frac{3034703}{6912} \) \( \bigl[a\) , \( a\) , \( 0\) , \( -3 a + 54\) , \( -43 a + 10\bigr] \) ${y}^2+a{x}{y}={x}^3+a{x}^2+\left(-3a+54\right){x}-43a+10$
108.6-b4 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.547730562$ $2.131570041$ 1.947568094 \( \frac{134585581}{589824} a - \frac{111715025}{294912} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -4 a - 23\) , \( 37 a + 83\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a-1\right){x}^2+\left(-4a-23\right){x}+37a+83$
108.6-b5 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.068466320$ $2.131570041$ 1.947568094 \( -\frac{134585581}{589824} a - \frac{29614823}{196608} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -3 a + 34\) , \( -39 a - 73\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a-1\right){x}^2+\left(-3a+34\right){x}-39a-73$
108.6-b6 108.6-b \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.273865281$ $2.131570041$ 1.947568094 \( -\frac{54256267}{20736} a + \frac{22576079}{10368} \) \( \bigl[1\) , \( -a - 1\) , \( 1\) , \( -3 a + 10\) , \( a + 7\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(-a-1\right){x}^2+\left(-3a+10\right){x}+a+7$
108.6-c1 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.602842775$ 2.011222529 \( \frac{109951540241875}{419904} a - \frac{33314367587125}{69984} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -855 a + 3588\) , \( 24741 a + 54133\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(-855a+3588\right){x}+24741a+54133$
108.6-c2 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.602842775$ 2.011222529 \( -\frac{109951540241875}{419904} a - \frac{89934665280875}{419904} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -96 a + 958\) , \( -4007 a - 1907\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a-1\right){x}^2+\left(-96a+958\right){x}-4007a-1907$
108.6-c3 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( \frac{354186588125}{186624} a - \frac{27812478875}{31104} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -38 a - 1175\) , \( 758 a + 15755\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(-38a-1175\right){x}+758a+15755$
108.6-c4 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( \frac{368445625}{452984832} a - \frac{2494870375}{50331648} \) \( \bigl[1\) , \( -1\) , \( a + 1\) , \( -38 a + 40\) , \( 353 a - 2065\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^3-{x}^2+\left(-38a+40\right){x}+353a-2065$
108.6-c5 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( -\frac{368445625}{452984832} a - \frac{11042693875}{226492416} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 4 a - 2\) , \( 13 a + 55\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a-1\right){x}^2+\left(4a-2\right){x}+13a+55$
108.6-c6 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.602842775$ 2.011222529 \( \frac{619619905802875}{2259436291848} a + \frac{216583694696500}{282429536481} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 57 a + 394\) , \( 459 a - 4141\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(57a+394\right){x}+459a-4141$
108.6-c7 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $0.602842775$ 2.011222529 \( -\frac{619619905802875}{2259436291848} a + \frac{784096487791625}{753145430616} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 42 a - 461\) , \( 1149 a - 1531\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(42a-461\right){x}+1149a-1531$
108.6-c8 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( \frac{20281552375}{34012224} a + \frac{23002752625}{11337408} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( 2 a + 139\) , \( 269 a - 427\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(2a+139\right){x}+269a-427$
108.6-c9 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( -\frac{20281552375}{34012224} a + \frac{44644905125}{17006112} \) \( \bigl[a + 1\) , \( a - 1\) , \( a + 1\) , \( -3 a - 146\) , \( -21 a - 397\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(a-1\right){x}^2+\left(-3a-146\right){x}-21a-397$
108.6-c10 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( \frac{28681134125}{2985984} a + \frac{14290715375}{1492992} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -55 a + 228\) , \( 421 a + 757\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(-55a+228\right){x}+421a+757$
108.6-c11 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( -\frac{28681134125}{2985984} a + \frac{19087521625}{995328} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( -6 a + 58\) , \( -47 a - 35\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a-1\right){x}^2+\left(-6a+58\right){x}-47a-35$
108.6-c12 108.6-c \(\Q(\sqrt{-23}) \) \( 2^{2} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.205685550$ 2.011222529 \( -\frac{354186588125}{186624} a + \frac{187311714875}{186624} \) \( \bigl[1\) , \( a - 1\) , \( 1\) , \( 4 a - 137\) , \( -17 a - 575\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+\left(a-1\right){x}^2+\left(4a-137\right){x}-17a-575$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.