16.1-a1
16.1-a
2 2 2
2 2 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 20 2^{20} 2 2 0
0.79925 0.79925 0 . 7 9 9 2 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
8.594800260 8.594800260 8 . 5 9 4 8 0 0 2 6 0
0.960927881
2048 2048 2 0 4 8
[ 0 \bigl[0 [ 0 , − a -a − a , 0 0 0 , 1 1 1 , − a ] -a\bigr] − a ]
y 2 = x 3 − a x 2 + x − a {y}^2={x}^3-a{x}^2+{x}-a y 2 = x 3 − a x 2 + x − a
16.1-a2
16.1-a
2 2 2
2 2 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 4 2^{4} 2 4
0.79925 0.79925 0 . 7 9 9 2 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
8.594800260 8.594800260 8 . 5 9 4 8 0 0 2 6 0
0.960927881
78608 78608 7 8 6 0 8
[ a + 1 \bigl[a + 1 [ a + 1 , 1 1 1 , a + 1 a + 1 a + 1 , − a + 3 -a + 3 − a + 3 , 1 ] 1\bigr] 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − a + 3 ) x + 1 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+{x}^2+\left(-a+3\right){x}+1 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + x 2 + ( − a + 3 ) x + 1
16.1-b1
16.1-b
2 2 2
2 2 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 20 2^{20} 2 2 0
0.79925 0.79925 0 . 7 9 9 2 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
8.594800260 8.594800260 8 . 5 9 4 8 0 0 2 6 0
0.960927881
2048 2048 2 0 4 8
[ 0 \bigl[0 [ 0 , a a a , 0 0 0 , 1 1 1 , a ] a\bigr] a ]
y 2 = x 3 + a x 2 + x + a {y}^2={x}^3+a{x}^2+{x}+a y 2 = x 3 + a x 2 + x + a
16.1-b2
16.1-b
2 2 2
2 2 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
16.1
2 4 2^{4} 2 4
2 4 2^{4} 2 4
0.79925 0.79925 0 . 7 9 9 2 5
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2B
1 1 1
1 1 1
1 1 1
8.594800260 8.594800260 8 . 5 9 4 8 0 0 2 6 0
0.960927881
78608 78608 7 8 6 0 8
[ a + 1 \bigl[a + 1 [ a + 1 , − a + 1 -a + 1 − a + 1 , a + 1 a + 1 a + 1 , − a + 3 -a + 3 − a + 3 , − a + 1 ] -a + 1\bigr] − a + 1 ]
y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − a + 3 ) x − a + 1 {y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+\left(-a+3\right){x}-a+1 y 2 + ( a + 1 ) x y + ( a + 1 ) y = x 3 + ( − a + 1 ) x 2 + ( − a + 3 ) x − a + 1
20.1-a1
20.1-a
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 16 ⋅ 5 12 2^{16} \cdot 5^{12} 2 1 6 ⋅ 5 1 2
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.478749283
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 36 -36 − 3 6 , − 140 ] -140\bigr] − 1 4 0 ]
y 2 = x 3 + x 2 − 36 x − 140 {y}^2={x}^3+{x}^2-36{x}-140 y 2 = x 3 + x 2 − 3 6 x − 1 4 0
20.1-a2
20.1-a
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.478749283
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , 4 4 4 , 4 ] 4\bigr] 4 ]
y 2 = x 3 + x 2 + 4 x + 4 {y}^2={x}^3+{x}^2+4{x}+4 y 2 = x 3 + x 2 + 4 x + 4
20.1-a3
20.1-a
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 6 Z \Z/6\Z Z / 6 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
0.478749283
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + x 2 − x {y}^2={x}^3+{x}^2-{x} y 2 = x 3 + x 2 − x
20.1-a4
20.1-a
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B.1.1
1 1 1
2 2 2
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
0.478749283
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , 1 1 1 , 0 0 0 , − 41 -41 − 4 1 , − 116 ] -116\bigr] − 1 1 6 ]
y 2 = x 3 + x 2 − 41 x − 116 {y}^2={x}^3+{x}^2-41{x}-116 y 2 = x 3 + x 2 − 4 1 x − 1 1 6
20.1-b1
20.1-b
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 16 ⋅ 5 12 2^{16} \cdot 5^{12} 2 1 6 ⋅ 5 1 2
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
1.436247851
− 20720464 15625 -\frac{20720464}{15625} − 1 5 6 2 5 2 0 7 2 0 4 6 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 36 -36 − 3 6 , 140 ] 140\bigr] 1 4 0 ]
y 2 = x 3 − x 2 − 36 x + 140 {y}^2={x}^3-{x}^2-36{x}+140 y 2 = x 3 − x 2 − 3 6 x + 1 4 0
20.1-b2
20.1-b
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
1.436247851
21296 25 \frac{21296}{25} 2 5 2 1 2 9 6
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , 4 4 4 , − 4 ] -4\bigr] − 4 ]
y 2 = x 3 − x 2 + 4 x − 4 {y}^2={x}^3-{x}^2+4{x}-4 y 2 = x 3 − x 2 + 4 x − 4
20.1-b3
20.1-b
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 2 2
1 1 1
6.423095656 6.423095656 6 . 4 2 3 0 9 5 6 5 6
1.436247851
16384 5 \frac{16384}{5} 5 1 6 3 8 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x 2 − x {y}^2={x}^3-{x}^2-{x} y 2 = x 3 − x 2 − x
20.1-b4
20.1-b
4 4 4
6 6 6
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
20.1
2 2 ⋅ 5 2^{2} \cdot 5 2 2 ⋅ 5
2 8 ⋅ 5 6 2^{8} \cdot 5^{6} 2 8 ⋅ 5 6
0.84511 0.84511 0 . 8 4 5 1 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 , 3 2, 3 2 , 3
2B , 3B
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
2.141031885 2.141031885 2 . 1 4 1 0 3 1 8 8 5
1.436247851
488095744 125 \frac{488095744}{125} 1 2 5 4 8 8 0 9 5 7 4 4
[ 0 \bigl[0 [ 0 , − 1 -1 − 1 , 0 0 0 , − 41 -41 − 4 1 , 116 ] 116\bigr] 1 1 6 ]
y 2 = x 3 − x 2 − 41 x + 116 {y}^2={x}^3-{x}^2-41{x}+116 y 2 = x 3 − x 2 − 4 1 x + 1 1 6
40.1-a1
40.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 20 ⋅ 5 8 2^{20} \cdot 5^{8} 2 2 0 ⋅ 5 8
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
0.233348375 0.233348375 0 . 2 3 3 3 4 8 3 7 5
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.250980172
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 13 13 1 3 , − 34 ] -34\bigr] − 3 4 ]
y 2 = x 3 + 13 x − 34 {y}^2={x}^3+13{x}-34 y 2 = x 3 + 1 3 x − 3 4
40.1-a2
40.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
0.466696751 0.466696751 0 . 4 6 6 6 9 6 7 5 1
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.250980172
148176 25 \frac{148176}{25} 2 5 1 4 8 1 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 7 -7 − 7 , − 6 ] -6\bigr] − 6 ]
y 2 = x 3 − 7 x − 6 {y}^2={x}^3-7{x}-6 y 2 = x 3 − 7 x − 6
40.1-a3
40.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 2 2^{2} 2 2
0.933393502 0.933393502 0 . 9 3 3 3 9 3 5 0 2
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.250980172
55296 5 \frac{55296}{5} 5 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 2 -2 − 2 , 1 ] 1\bigr] 1 ]
y 2 = x 3 − 2 x + 1 {y}^2={x}^3-2{x}+1 y 2 = x 3 − 2 x + 1
40.1-a4
40.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 20 ⋅ 5 2 2^{20} \cdot 5^{2} 2 2 0 ⋅ 5 2
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
0.933393502 0.933393502 0 . 9 3 3 3 9 3 5 0 2
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.250980172
132304644 5 \frac{132304644}{5} 5 1 3 2 3 0 4 6 4 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 107 -107 − 1 0 7 , − 426 ] -426\bigr] − 4 2 6 ]
y 2 = x 3 − 107 x − 426 {y}^2={x}^3-107{x}-426 y 2 = x 3 − 1 0 7 x − 4 2 6
40.1-b1
40.1-b
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 20 ⋅ 5 8 2^{20} \cdot 5^{8} 2 2 0 ⋅ 5 8
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.340249496
237276 625 \frac{237276}{625} 6 2 5 2 3 7 2 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 13 13 1 3 , 34 ] 34\bigr] 3 4 ]
y 2 = x 3 + 13 x + 34 {y}^2={x}^3+13{x}+34 y 2 = x 3 + 1 3 x + 3 4
40.1-b2
40.1-b
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 16 ⋅ 5 4 2^{16} \cdot 5^{4} 2 1 6 ⋅ 5 4
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.340249496
148176 25 \frac{148176}{25} 2 5 1 4 8 1 7 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 7 -7 − 7 , 6 ] 6\bigr] 6 ]
y 2 = x 3 − 7 x + 6 {y}^2={x}^3-7{x}+6 y 2 = x 3 − 7 x + 6
40.1-b3
40.1-b
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 8 ⋅ 5 2 2^{8} \cdot 5^{2} 2 8 ⋅ 5 2
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 3 2^{3} 2 3
1 1 1
5.993777963 5.993777963 5 . 9 9 3 7 7 7 9 6 3
1.340249496
55296 5 \frac{55296}{5} 5 5 5 2 9 6
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 2 -2 − 2 , − 1 ] -1\bigr] − 1 ]
y 2 = x 3 − 2 x − 1 {y}^2={x}^3-2{x}-1 y 2 = x 3 − 2 x − 1
40.1-b4
40.1-b
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
40.1
2 3 ⋅ 5 2^{3} \cdot 5 2 3 ⋅ 5
2 20 ⋅ 5 2 2^{20} \cdot 5^{2} 2 2 0 ⋅ 5 2
1.00501 1.00501 1 . 0 0 5 0 1
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 2 2^{2} 2 2
1 1 1
2.996888981 2.996888981 2 . 9 9 6 8 8 8 9 8 1
1.340249496
132304644 5 \frac{132304644}{5} 5 1 3 2 3 0 4 6 4 4
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 107 -107 − 1 0 7 , 426 ] 426\bigr] 4 2 6 ]
y 2 = x 3 − 107 x + 426 {y}^2={x}^3-107{x}+426 y 2 = x 3 − 1 0 7 x + 4 2 6
45.2-a1
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 40 ⋅ 5 3^{40} \cdot 5 3 4 0 ⋅ 5
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 2 2^{2} 2 2
1 1 1
0.279462714 0.279462714 0 . 2 7 9 4 6 2 7 1 4
0.499918100
− 33987626912827121359 9265100944259205 a − 10358164733153980696 1853020188851841 -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} − 9 2 6 5 1 0 0 9 4 4 2 5 9 2 0 5 3 3 9 8 7 6 2 6 9 1 2 8 2 7 1 2 1 3 5 9 a − 1 8 5 3 0 2 0 1 8 8 8 5 1 8 4 1 1 0 3 5 8 1 6 4 7 3 3 1 5 3 9 8 0 6 9 6
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 395 a + 90 -395 a + 90 − 3 9 5 a + 9 0 , 2916 a − 8170 ] 2916 a - 8170\bigr] 2 9 1 6 a − 8 1 7 0 ]
y 2 + x y + y = x 3 + x 2 + ( − 395 a + 90 ) x + 2916 a − 8170 {y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(-395a+90\right){x}+2916a-8170 y 2 + x y + y = x 3 + x 2 + ( − 3 9 5 a + 9 0 ) x + 2 9 1 6 a − 8 1 7 0
45.2-a2
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 40 ⋅ 5 3^{40} \cdot 5 3 4 0 ⋅ 5
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
4 4 4
2 2 2^{2} 2 2
1 1 1
0.279462714 0.279462714 0 . 2 7 9 4 6 2 7 1 4
0.499918100
33987626912827121359 9265100944259205 a − 10358164733153980696 1853020188851841 \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} 9 2 6 5 1 0 0 9 4 4 2 5 9 2 0 5 3 3 9 8 7 6 2 6 9 1 2 8 2 7 1 2 1 3 5 9 a − 1 8 5 3 0 2 0 1 8 8 8 5 1 8 4 1 1 0 3 5 8 1 6 4 7 3 3 1 5 3 9 8 0 6 9 6
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 395 a + 90 395 a + 90 3 9 5 a + 9 0 , − 2916 a − 8170 ] -2916 a - 8170\bigr] − 2 9 1 6 a − 8 1 7 0 ]
y 2 + x y + y = x 3 + x 2 + ( 395 a + 90 ) x − 2916 a − 8170 {y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(395a+90\right){x}-2916a-8170 y 2 + x y + y = x 3 + x 2 + ( 3 9 5 a + 9 0 ) x − 2 9 1 6 a − 8 1 7 0
45.2-a3
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 32 ⋅ 5 2 3^{32} \cdot 5^{2} 3 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 3 2^{3} 2 3
1 1 1
0.558925428 0.558925428 0 . 5 5 8 9 2 5 4 2 8
0.499918100
− 147281603041 215233605 -\frac{147281603041}{215233605} − 2 1 5 2 3 3 6 0 5 1 4 7 2 8 1 6 0 3 0 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 110 -110 − 1 1 0 , − 880 ] -880\bigr] − 8 8 0 ]
y 2 + x y + y = x 3 + x 2 − 110 x − 880 {y}^2+{x}{y}+{y}={x}^3+{x}^2-110{x}-880 y 2 + x y + y = x 3 + x 2 − 1 1 0 x − 8 8 0
45.2-a4
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
8.942806850 8.942806850 8 . 9 4 2 8 0 6 8 5 0
0.499918100
− 1 15 -\frac{1}{15} − 1 5 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + x y + y = x 3 + x 2 {y}^2+{x}{y}+{y}={x}^3+{x}^2 y 2 + x y + y = x 3 + x 2
45.2-a5
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 16 3^{4} \cdot 5^{16} 3 4 ⋅ 5 1 6
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 8 Z \Z/8\Z Z / 8 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
1.117850856 1.117850856 1 . 1 1 7 8 5 0 8 5 6
0.499918100
4733169839 3515625 \frac{4733169839}{3515625} 3 5 1 5 6 2 5 4 7 3 3 1 6 9 8 3 9
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 35 35 3 5 , − 28 ] -28\bigr] − 2 8 ]
y 2 + x y + y = x 3 + x 2 + 35 x − 28 {y}^2+{x}{y}+{y}={x}^3+{x}^2+35{x}-28 y 2 + x y + y = x 3 + x 2 + 3 5 x − 2 8
45.2-a6
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 8 3^{8} \cdot 5^{8} 3 8 ⋅ 5 8
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 5 2^{5} 2 5
1 1 1
2.235701712 2.235701712 2 . 2 3 5 7 0 1 7 1 2
0.499918100
111284641 50625 \frac{111284641}{50625} 5 0 6 2 5 1 1 1 2 8 4 6 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 10 -10 − 1 0 , − 10 ] -10\bigr] − 1 0 ]
y 2 + x y + y = x 3 + x 2 − 10 x − 10 {y}^2+{x}{y}+{y}={x}^3+{x}^2-10{x}-10 y 2 + x y + y = x 3 + x 2 − 1 0 x − 1 0
45.2-a7
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 4 3^{4} \cdot 5^{4} 3 4 ⋅ 5 4
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
4.471403425 4.471403425 4 . 4 7 1 4 0 3 4 2 5
0.499918100
13997521 225 \frac{13997521}{225} 2 2 5 1 3 9 9 7 5 2 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 5 -5 − 5 , 2 ] 2\bigr] 2 ]
y 2 + x y + y = x 3 + x 2 − 5 x + 2 {y}^2+{x}{y}+{y}={x}^3+{x}^2-5{x}+2 y 2 + x y + y = x 3 + x 2 − 5 x + 2
45.2-a8
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 16 ⋅ 5 4 3^{16} \cdot 5^{4} 3 1 6 ⋅ 5 4
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 4 2^{4} 2 4
1 1 1
1.117850856 1.117850856 1 . 1 1 7 8 5 0 8 5 6
0.499918100
272223782641 164025 \frac{272223782641}{164025} 1 6 4 0 2 5 2 7 2 2 2 3 7 8 2 6 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 135 -135 − 1 3 5 , − 660 ] -660\bigr] − 6 6 0 ]
y 2 + x y + y = x 3 + x 2 − 135 x − 660 {y}^2+{x}{y}+{y}={x}^3+{x}^2-135{x}-660 y 2 + x y + y = x 3 + x 2 − 1 3 5 x − 6 6 0
45.2-a9
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 2 2
1 1 1
2.235701712 2.235701712 2 . 2 3 5 7 0 1 7 1 2
0.499918100
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 80 -80 − 8 0 , 242 ] 242\bigr] 2 4 2 ]
y 2 + x y + y = x 3 + x 2 − 80 x + 242 {y}^2+{x}{y}+{y}={x}^3+{x}^2-80{x}+242 y 2 + x y + y = x 3 + x 2 − 8 0 x + 2 4 2
45.2-a10
45.2-a
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 2 3^{8} \cdot 5^{2} 3 8 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 3 2^{3} 2 3
1 1 1
0.558925428 0.558925428 0 . 5 5 8 9 2 5 4 2 8
0.499918100
1114544804970241 405 \frac{1114544804970241}{405} 4 0 5 1 1 1 4 5 4 4 8 0 4 9 7 0 2 4 1
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 2160 -2160 − 2 1 6 0 , − 39540 ] -39540\bigr] − 3 9 5 4 0 ]
y 2 + x y + y = x 3 + x 2 − 2160 x − 39540 {y}^2+{x}{y}+{y}={x}^3+{x}^2-2160{x}-39540 y 2 + x y + y = x 3 + x 2 − 2 1 6 0 x − 3 9 5 4 0
45.2-b1
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 40 ⋅ 5 3^{40} \cdot 5 3 4 0 ⋅ 5
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 8 2^{8} 2 8
1 1 1
0.279462714 0.279462714 0 . 2 7 9 4 6 2 7 1 4
1.999672402
− 33987626912827121359 9265100944259205 a − 10358164733153980696 1853020188851841 -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} − 9 2 6 5 1 0 0 9 4 4 2 5 9 2 0 5 3 3 9 8 7 6 2 6 9 1 2 8 2 7 1 2 1 3 5 9 a − 1 8 5 3 0 2 0 1 8 8 8 5 1 8 4 1 1 0 3 5 8 1 6 4 7 3 3 1 5 3 9 8 0 6 9 6
[ a \bigl[a [ a , 0 0 0 , a a a , − 395 a + 93 -395 a + 93 − 3 9 5 a + 9 3 , − 2916 a + 8171 ] -2916 a + 8171\bigr] − 2 9 1 6 a + 8 1 7 1 ]
y 2 + a x y + a y = x 3 + ( − 395 a + 93 ) x − 2916 a + 8171 {y}^2+a{x}{y}+a{y}={x}^3+\left(-395a+93\right){x}-2916a+8171 y 2 + a x y + a y = x 3 + ( − 3 9 5 a + 9 3 ) x − 2 9 1 6 a + 8 1 7 1
45.2-b2
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 40 ⋅ 5 3^{40} \cdot 5 3 4 0 ⋅ 5
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
2 2 2
2Cs
1 1 1
2 8 2^{8} 2 8
1 1 1
0.279462714 0.279462714 0 . 2 7 9 4 6 2 7 1 4
1.999672402
33987626912827121359 9265100944259205 a − 10358164733153980696 1853020188851841 \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} 9 2 6 5 1 0 0 9 4 4 2 5 9 2 0 5 3 3 9 8 7 6 2 6 9 1 2 8 2 7 1 2 1 3 5 9 a − 1 8 5 3 0 2 0 1 8 8 8 5 1 8 4 1 1 0 3 5 8 1 6 4 7 3 3 1 5 3 9 8 0 6 9 6
[ a \bigl[a [ a , 0 0 0 , a a a , 395 a + 93 395 a + 93 3 9 5 a + 9 3 , 2916 a + 8171 ] 2916 a + 8171\bigr] 2 9 1 6 a + 8 1 7 1 ]
y 2 + a x y + a y = x 3 + ( 395 a + 93 ) x + 2916 a + 8171 {y}^2+a{x}{y}+a{y}={x}^3+\left(395a+93\right){x}+2916a+8171 y 2 + a x y + a y = x 3 + ( 3 9 5 a + 9 3 ) x + 2 9 1 6 a + 8 1 7 1
45.2-b3
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 32 ⋅ 5 2 3^{32} \cdot 5^{2} 3 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 9 2^{9} 2 9
1 1 1
0.558925428 0.558925428 0 . 5 5 8 9 2 5 4 2 8
1.999672402
− 147281603041 215233605 -\frac{147281603041}{215233605} − 2 1 5 2 3 3 6 0 5 1 4 7 2 8 1 6 0 3 0 4 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 107 -107 − 1 0 7 , 881 ] 881\bigr] 8 8 1 ]
y 2 + a x y + a y = x 3 − 107 x + 881 {y}^2+a{x}{y}+a{y}={x}^3-107{x}+881 y 2 + a x y + a y = x 3 − 1 0 7 x + 8 8 1
45.2-b4
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 2 2
1 1 1
8.942806850 8.942806850 8 . 9 4 2 8 0 6 8 5 0
1.999672402
− 1 15 -\frac{1}{15} − 1 5 1
[ a \bigl[a [ a , 0 0 0 , a a a , 3 3 3 , 1 ] 1\bigr] 1 ]
y 2 + a x y + a y = x 3 + 3 x + 1 {y}^2+a{x}{y}+a{y}={x}^3+3{x}+1 y 2 + a x y + a y = x 3 + 3 x + 1
45.2-b5
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 16 3^{4} \cdot 5^{16} 3 4 ⋅ 5 1 6
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 6 2^{6} 2 6
1 1 1
1.117850856 1.117850856 1 . 1 1 7 8 5 0 8 5 6
1.999672402
4733169839 3515625 \frac{4733169839}{3515625} 3 5 1 5 6 2 5 4 7 3 3 1 6 9 8 3 9
[ a \bigl[a [ a , 0 0 0 , a a a , 38 38 3 8 , 29 ] 29\bigr] 2 9 ]
y 2 + a x y + a y = x 3 + 38 x + 29 {y}^2+a{x}{y}+a{y}={x}^3+38{x}+29 y 2 + a x y + a y = x 3 + 3 8 x + 2 9
45.2-b6
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 8 3^{8} \cdot 5^{8} 3 8 ⋅ 5 8
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 7 2^{7} 2 7
1 1 1
2.235701712 2.235701712 2 . 2 3 5 7 0 1 7 1 2
1.999672402
111284641 50625 \frac{111284641}{50625} 5 0 6 2 5 1 1 1 2 8 4 6 4 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 7 -7 − 7 , 11 ] 11\bigr] 1 1 ]
y 2 + a x y + a y = x 3 − 7 x + 11 {y}^2+a{x}{y}+a{y}={x}^3-7{x}+11 y 2 + a x y + a y = x 3 − 7 x + 1 1
45.2-b7
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 4 ⋅ 5 4 3^{4} \cdot 5^{4} 3 4 ⋅ 5 4
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 4 2^{4} 2 4
1 1 1
4.471403425 4.471403425 4 . 4 7 1 4 0 3 4 2 5
1.999672402
13997521 225 \frac{13997521}{225} 2 2 5 1 3 9 9 7 5 2 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 2 -2 − 2 , − 1 ] -1\bigr] − 1 ]
y 2 + a x y + a y = x 3 − 2 x − 1 {y}^2+a{x}{y}+a{y}={x}^3-2{x}-1 y 2 + a x y + a y = x 3 − 2 x − 1
45.2-b8
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 16 ⋅ 5 4 3^{16} \cdot 5^{4} 3 1 6 ⋅ 5 4
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z ⊕ Z / 4 Z \Z/2\Z\oplus\Z/4\Z Z / 2 Z ⊕ Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
1 1 1
2 8 2^{8} 2 8
1 1 1
1.117850856 1.117850856 1 . 1 1 7 8 5 0 8 5 6
1.999672402
272223782641 164025 \frac{272223782641}{164025} 1 6 4 0 2 5 2 7 2 2 2 3 7 8 2 6 4 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 132 -132 − 1 3 2 , 661 ] 661\bigr] 6 6 1 ]
y 2 + a x y + a y = x 3 − 132 x + 661 {y}^2+a{x}{y}+a{y}={x}^3-132{x}+661 y 2 + a x y + a y = x 3 − 1 3 2 x + 6 6 1
45.2-b9
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 2 ⋅ 5 2 3^{2} \cdot 5^{2} 3 2 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 2 Z \Z/2\Z Z / 2 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 2 2
1 1 1
2.235701712 2.235701712 2 . 2 3 5 7 0 1 7 1 2
1.999672402
56667352321 15 \frac{56667352321}{15} 1 5 5 6 6 6 7 3 5 2 3 2 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 77 -77 − 7 7 , − 241 ] -241\bigr] − 2 4 1 ]
y 2 + a x y + a y = x 3 − 77 x − 241 {y}^2+a{x}{y}+a{y}={x}^3-77{x}-241 y 2 + a x y + a y = x 3 − 7 7 x − 2 4 1
45.2-b10
45.2-b
10 10 1 0
32 32 3 2
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
45.2
3 2 ⋅ 5 3^{2} \cdot 5 3 2 ⋅ 5
3 8 ⋅ 5 2 3^{8} \cdot 5^{2} 3 8 ⋅ 5 2
1.03504 1.03504 1 . 0 3 5 0 4
( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a ) (3,a+1), (3,a+2), (-a) ( 3 , a + 1 ) , ( 3 , a + 2 ) , ( − a )
0
Z / 4 Z \Z/4\Z Z / 4 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
✓
2 2 2
2Cs
4 4 4
2 5 2^{5} 2 5
1 1 1
0.558925428 0.558925428 0 . 5 5 8 9 2 5 4 2 8
1.999672402
1114544804970241 405 \frac{1114544804970241}{405} 4 0 5 1 1 1 4 5 4 4 8 0 4 9 7 0 2 4 1
[ a \bigl[a [ a , 0 0 0 , a a a , − 2157 -2157 − 2 1 5 7 , 39541 ] 39541\bigr] 3 9 5 4 1 ]
y 2 + a x y + a y = x 3 − 2157 x + 39541 {y}^2+a{x}{y}+a{y}={x}^3-2157{x}+39541 y 2 + a x y + a y = x 3 − 2 1 5 7 x + 3 9 5 4 1
50.1-a1
50.1-a
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 6 ⋅ 5 8 2^{6} \cdot 5^{8} 2 6 ⋅ 5 8
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B.1.1 , 5B.1.3
1 1 1
2 2 2
1 1 1
1.424166746 1.424166746 1 . 4 2 4 1 6 6 7 4 6
1.273813462
− 349938025 8 -\frac{349938025}{8} − 8 3 4 9 9 3 8 0 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 126 -126 − 1 2 6 , − 552 ] -552\bigr] − 5 5 2 ]
y 2 + x y + y = x 3 − 126 x − 552 {y}^2+{x}{y}+{y}={x}^3-126{x}-552 y 2 + x y + y = x 3 − 1 2 6 x − 5 5 2
50.1-a2
50.1-a
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 10 ⋅ 5 4 2^{10} \cdot 5^{4} 2 1 0 ⋅ 5 4
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B.1.1 , 5B.1.3
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.272500240 4.272500240 4 . 2 7 2 5 0 0 2 4 0
1.273813462
− 121945 32 -\frac{121945}{32} − 3 2 1 2 1 9 4 5
[ a \bigl[a [ a , 0 0 0 , a a a , 0 0 0 , 0 ] 0\bigr] 0 ]
y 2 + a x y + a y = x 3 {y}^2+a{x}{y}+a{y}={x}^3 y 2 + a x y + a y = x 3
50.1-a3
50.1-a
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 2 ⋅ 5 8 2^{2} \cdot 5^{8} 2 2 ⋅ 5 8
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
Z / 3 Z \Z/3\Z Z / 3 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B.1.1 , 5B.1.3
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
1 1 1
4.272500240 4.272500240 4 . 2 7 2 5 0 0 2 4 0
1.273813462
− 25 2 -\frac{25}{2} − 2 2 5
[ 1 \bigl[1 [ 1 , 0 0 0 , 1 1 1 , − 1 -1 − 1 , − 2 ] -2\bigr] − 2 ]
y 2 + x y + y = x 3 − x − 2 {y}^2+{x}{y}+{y}={x}^3-{x}-2 y 2 + x y + y = x 3 − x − 2
50.1-a4
50.1-a
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 30 ⋅ 5 4 2^{30} \cdot 5^{4} 2 3 0 ⋅ 5 4
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
0
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B.1.1 , 5B.1.3
1 1 1
2 2 2
1 1 1
1.424166746 1.424166746 1 . 4 2 4 1 6 6 7 4 6
1.273813462
46969655 32768 \frac{46969655}{32768} 3 2 7 6 8 4 6 9 6 9 6 5 5
[ a \bigl[a [ a , 0 0 0 , a a a , 25 25 2 5 , 10 ] 10\bigr] 1 0 ]
y 2 + a x y + a y = x 3 + 25 x + 10 {y}^2+a{x}{y}+a{y}={x}^3+25{x}+10 y 2 + a x y + a y = x 3 + 2 5 x + 1 0
50.1-b1
50.1-b
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 6 ⋅ 5 8 2^{6} \cdot 5^{8} 2 6 ⋅ 5 8
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B , 5B.1.2
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.194697629 0.194697629 0 . 1 9 4 6 9 7 6 2 9
1.424166746 1.424166746 1 . 4 2 4 1 6 6 7 4 6
1.488050770
− 349938025 8 -\frac{349938025}{8} − 8 3 4 9 9 3 8 0 2 5
[ a \bigl[a [ a , 1 1 1 , a a a , − 123 -123 − 1 2 3 , 553 ] 553\bigr] 5 5 3 ]
y 2 + a x y + a y = x 3 + x 2 − 123 x + 553 {y}^2+a{x}{y}+a{y}={x}^3+{x}^2-123{x}+553 y 2 + a x y + a y = x 3 + x 2 − 1 2 3 x + 5 5 3
50.1-b2
50.1-b
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 10 ⋅ 5 4 2^{10} \cdot 5^{4} 2 1 0 ⋅ 5 4
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B , 5B.1.2
1 1 1
2 ⋅ 3 ⋅ 5 2 \cdot 3 \cdot 5 2 ⋅ 3 ⋅ 5
0.324496049 0.324496049 0 . 3 2 4 4 9 6 0 4 9
4.272500240 4.272500240 4 . 2 7 2 5 0 0 2 4 0
1.488050770
− 121945 32 -\frac{121945}{32} − 3 2 1 2 1 9 4 5
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , − 3 -3 − 3 , 1 ] 1\bigr] 1 ]
y 2 + x y + y = x 3 + x 2 − 3 x + 1 {y}^2+{x}{y}+{y}={x}^3+{x}^2-3{x}+1 y 2 + x y + y = x 3 + x 2 − 3 x + 1
50.1-b3
50.1-b
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 2 ⋅ 5 8 2^{2} \cdot 5^{8} 2 2 ⋅ 5 8
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
t r i v i a l \mathsf{trivial} t r i v i a l
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B , 5B.1.2
1 1 1
2 ⋅ 3 2 \cdot 3 2 ⋅ 3
0.064899209 0.064899209 0 . 0 6 4 8 9 9 2 0 9
4.272500240 4.272500240 4 . 2 7 2 5 0 0 2 4 0
1.488050770
− 25 2 -\frac{25}{2} − 2 2 5
[ a \bigl[a [ a , 1 1 1 , a a a , 2 2 2 , 3 ] 3\bigr] 3 ]
y 2 + a x y + a y = x 3 + x 2 + 2 x + 3 {y}^2+a{x}{y}+a{y}={x}^3+{x}^2+2{x}+3 y 2 + a x y + a y = x 3 + x 2 + 2 x + 3
50.1-b4
50.1-b
4 4 4
15 15 1 5
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
50.1
2 ⋅ 5 2 2 \cdot 5^{2} 2 ⋅ 5 2
2 30 ⋅ 5 4 2^{30} \cdot 5^{4} 2 3 0 ⋅ 5 4
1.06266 1.06266 1 . 0 6 2 6 6
( 2 , a + 1 ) , ( − a ) (2,a+1), (-a) ( 2 , a + 1 ) , ( − a )
1 1 1
Z / 5 Z \Z/5\Z Z / 5 Z
no \textsf{no} no
S U ( 2 ) \mathrm{SU}(2) S U ( 2 )
✓
✓
3 , 5 3, 5 3 , 5
3B , 5B.1.2
1 1 1
2 ⋅ 3 ⋅ 5 2 \cdot 3 \cdot 5 2 ⋅ 3 ⋅ 5
0.973488147 0.973488147 0 . 9 7 3 4 8 8 1 4 7
1.424166746 1.424166746 1 . 4 2 4 1 6 6 7 4 6
1.488050770
46969655 32768 \frac{46969655}{32768} 3 2 7 6 8 4 6 9 6 9 6 5 5
[ 1 \bigl[1 [ 1 , 1 1 1 , 1 1 1 , 22 22 2 2 , − 9 ] -9\bigr] − 9 ]
y 2 + x y + y = x 3 + x 2 + 22 x − 9 {y}^2+{x}{y}+{y}={x}^3+{x}^2+22{x}-9 y 2 + x y + y = x 3 + x 2 + 2 2 x − 9
64.1-a1
64.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 12 2^{12} 2 1 2
1.13031 1.13031 1 . 1 3 0 3 1
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 2 Z ⊕ Z / 2 Z \Z/2\Z\oplus\Z/2\Z Z / 2 Z ⊕ Z / 2 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 , 5 2, 5 2 , 5
2Cs , 5Ns.2.1
1 1 1
2 2 2
1.899482172 1.899482172 1 . 8 9 9 4 8 2 1 7 2
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
1.460073332
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , − 1 -1 − 1 , 0 ] 0\bigr] 0 ]
y 2 = x 3 − x {y}^2={x}^3-{x} y 2 = x 3 − x
64.1-a2
64.1-a
4 4 4
4 4 4
Q ( − 5 ) \Q(\sqrt{-5}) Q ( − 5 )
2 2 2
[ 0 , 1 ] [0, 1] [ 0 , 1 ]
64.1
2 6 2^{6} 2 6
2 24 2^{24} 2 2 4
1.13031 1.13031 1 . 1 3 0 3 1
( 2 , a + 1 ) (2,a+1) ( 2 , a + 1 )
1 1 1
Z / 4 Z \Z/4\Z Z / 4 Z
potential \textsf{potential} potential
− 4 -4 − 4
N ( U ( 1 ) ) N(\mathrm{U}(1)) N ( U ( 1 ) )
✓
✓
✓
2 , 5 2, 5 2 , 5
2Cs , 5Ns.2.1
1 1 1
2 2 2^{2} 2 2
0.949741086 0.949741086 0 . 9 4 9 7 4 1 0 8 6
6.875185818 6.875185818 6 . 8 7 5 1 8 5 8 1 8
1.460073332
1728 1728 1 7 2 8
[ 0 \bigl[0 [ 0 , 0 0 0 , 0 0 0 , 4 4 4 , 0 ] 0\bigr] 0 ]
y 2 = x 3 + 4 x {y}^2={x}^3+4{x} y 2 = x 3 + 4 x