Learn more

Refine search


Results (1-50 of 1782 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-a1 16.1-a Q(5)\Q(\sqrt{-5}) 24 2^{4} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5948002608.594800260 0.960927881 2048 2048 [0 \bigl[0 , a -a , 0 0 , 1 1 , a] -a\bigr] y2=x3ax2+xa{y}^2={x}^3-a{x}^2+{x}-a
16.1-a2 16.1-a Q(5)\Q(\sqrt{-5}) 24 2^{4} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5948002608.594800260 0.960927881 78608 78608 [a+1 \bigl[a + 1 , 1 1 , a+1 a + 1 , a+3 -a + 3 , 1] 1\bigr] y2+(a+1)xy+(a+1)y=x3+x2+(a+3)x+1{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+{x}^2+\left(-a+3\right){x}+1
16.1-b1 16.1-b Q(5)\Q(\sqrt{-5}) 24 2^{4} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5948002608.594800260 0.960927881 2048 2048 [0 \bigl[0 , a a , 0 0 , 1 1 , a] a\bigr] y2=x3+ax2+x+a{y}^2={x}^3+a{x}^2+{x}+a
16.1-b2 16.1-b Q(5)\Q(\sqrt{-5}) 24 2^{4} 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.5948002608.594800260 0.960927881 78608 78608 [a+1 \bigl[a + 1 , a+1 -a + 1 , a+1 a + 1 , a+3 -a + 3 , a+1] -a + 1\bigr] y2+(a+1)xy+(a+1)y=x3+(a+1)x2+(a+3)xa+1{y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+\left(-a+3\right){x}-a+1
20.1-a1 20.1-a Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 0.478749283 2072046415625 -\frac{20720464}{15625} [0 \bigl[0 , 1 1 , 0 0 , 36 -36 , 140] -140\bigr] y2=x3+x236x140{y}^2={x}^3+{x}^2-36{x}-140
20.1-a2 20.1-a Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 0.478749283 2129625 \frac{21296}{25} [0 \bigl[0 , 1 1 , 0 0 , 4 4 , 4] 4\bigr] y2=x3+x2+4x+4{y}^2={x}^3+{x}^2+4{x}+4
20.1-a3 20.1-a Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/6Z\Z/6\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 0.478749283 163845 \frac{16384}{5} [0 \bigl[0 , 1 1 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3+x2x{y}^2={x}^3+{x}^2-{x}
20.1-a4 20.1-a Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 0.478749283 488095744125 \frac{488095744}{125} [0 \bigl[0 , 1 1 , 0 0 , 41 -41 , 116] -116\bigr] y2=x3+x241x116{y}^2={x}^3+{x}^2-41{x}-116
20.1-b1 20.1-b Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 1.436247851 2072046415625 -\frac{20720464}{15625} [0 \bigl[0 , 1 -1 , 0 0 , 36 -36 , 140] 140\bigr] y2=x3x236x+140{y}^2={x}^3-{x}^2-36{x}+140
20.1-b2 20.1-b Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 1.436247851 2129625 \frac{21296}{25} [0 \bigl[0 , 1 -1 , 0 0 , 4 4 , 4] -4\bigr] y2=x3x2+4x4{y}^2={x}^3-{x}^2+4{x}-4
20.1-b3 20.1-b Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 6.4230956566.423095656 1.436247851 163845 \frac{16384}{5} [0 \bigl[0 , 1 -1 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x2x{y}^2={x}^3-{x}^2-{x}
20.1-b4 20.1-b Q(5)\Q(\sqrt{-5}) 225 2^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.1410318852.141031885 1.436247851 488095744125 \frac{488095744}{125} [0 \bigl[0 , 1 -1 , 0 0 , 41 -41 , 116] 116\bigr] y2=x3x241x+116{y}^2={x}^3-{x}^2-41{x}+116
40.1-a1 40.1-a Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.2333483750.233348375 2.9968889812.996888981 1.250980172 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 13 13 , 34] -34\bigr] y2=x3+13x34{y}^2={x}^3+13{x}-34
40.1-a2 40.1-a Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 0.4666967510.466696751 5.9937779635.993777963 1.250980172 14817625 \frac{148176}{25} [0 \bigl[0 , 0 0 , 0 0 , 7 -7 , 6] -6\bigr] y2=x37x6{y}^2={x}^3-7{x}-6
40.1-a3 40.1-a Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.9333935020.933393502 5.9937779635.993777963 1.250980172 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 2 -2 , 1] 1\bigr] y2=x32x+1{y}^2={x}^3-2{x}+1
40.1-a4 40.1-a Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 11 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 0.9333935020.933393502 2.9968889812.996888981 1.250980172 1323046445 \frac{132304644}{5} [0 \bigl[0 , 0 0 , 0 0 , 107 -107 , 426] -426\bigr] y2=x3107x426{y}^2={x}^3-107{x}-426
40.1-b1 40.1-b Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 1.340249496 237276625 \frac{237276}{625} [0 \bigl[0 , 0 0 , 0 0 , 13 13 , 34] 34\bigr] y2=x3+13x+34{y}^2={x}^3+13{x}+34
40.1-b2 40.1-b Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 1.340249496 14817625 \frac{148176}{25} [0 \bigl[0 , 0 0 , 0 0 , 7 -7 , 6] 6\bigr] y2=x37x+6{y}^2={x}^3-7{x}+6
40.1-b3 40.1-b Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 5.9937779635.993777963 1.340249496 552965 \frac{55296}{5} [0 \bigl[0 , 0 0 , 0 0 , 2 -2 , 1] -1\bigr] y2=x32x1{y}^2={x}^3-2{x}-1
40.1-b4 40.1-b Q(5)\Q(\sqrt{-5}) 235 2^{3} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.9968889812.996888981 1.340249496 1323046445 \frac{132304644}{5} [0 \bigl[0 , 0 0 , 0 0 , 107 -107 , 426] 426\bigr] y2=x3107x+426{y}^2={x}^3-107{x}+426
45.2-a1 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2794627140.279462714 0.499918100 339876269128271213599265100944259205a103581647331539806961853020188851841 -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} [1 \bigl[1 , 1 1 , 1 1 , 395a+90 -395 a + 90 , 2916a8170] 2916 a - 8170\bigr] y2+xy+y=x3+x2+(395a+90)x+2916a8170{y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(-395a+90\right){x}+2916a-8170
45.2-a2 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.2794627140.279462714 0.499918100 339876269128271213599265100944259205a103581647331539806961853020188851841 \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} [1 \bigl[1 , 1 1 , 1 1 , 395a+90 395 a + 90 , 2916a8170] -2916 a - 8170\bigr] y2+xy+y=x3+x2+(395a+90)x2916a8170{y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(395a+90\right){x}-2916a-8170
45.2-a3 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 0.5589254280.558925428 0.499918100 147281603041215233605 -\frac{147281603041}{215233605} [1 \bigl[1 , 1 1 , 1 1 , 110 -110 , 880] -880\bigr] y2+xy+y=x3+x2110x880{y}^2+{x}{y}+{y}={x}^3+{x}^2-110{x}-880
45.2-a4 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 8.9428068508.942806850 0.499918100 115 -\frac{1}{15} [1 \bigl[1 , 1 1 , 1 1 , 0 0 , 0] 0\bigr] y2+xy+y=x3+x2{y}^2+{x}{y}+{y}={x}^3+{x}^2
45.2-a5 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/8Z\Z/8\Z SU(2)\mathrm{SU}(2) 11 1.1178508561.117850856 0.499918100 47331698393515625 \frac{4733169839}{3515625} [1 \bigl[1 , 1 1 , 1 1 , 35 35 , 28] -28\bigr] y2+xy+y=x3+x2+35x28{y}^2+{x}{y}+{y}={x}^3+{x}^2+35{x}-28
45.2-a6 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2357017122.235701712 0.499918100 11128464150625 \frac{111284641}{50625} [1 \bigl[1 , 1 1 , 1 1 , 10 -10 , 10] -10\bigr] y2+xy+y=x3+x210x10{y}^2+{x}{y}+{y}={x}^3+{x}^2-10{x}-10
45.2-a7 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 4.4714034254.471403425 0.499918100 13997521225 \frac{13997521}{225} [1 \bigl[1 , 1 1 , 1 1 , 5 -5 , 2] 2\bigr] y2+xy+y=x3+x25x+2{y}^2+{x}{y}+{y}={x}^3+{x}^2-5{x}+2
45.2-a8 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.1178508561.117850856 0.499918100 272223782641164025 \frac{272223782641}{164025} [1 \bigl[1 , 1 1 , 1 1 , 135 -135 , 660] -660\bigr] y2+xy+y=x3+x2135x660{y}^2+{x}{y}+{y}={x}^3+{x}^2-135{x}-660
45.2-a9 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2357017122.235701712 0.499918100 5666735232115 \frac{56667352321}{15} [1 \bigl[1 , 1 1 , 1 1 , 80 -80 , 242] 242\bigr] y2+xy+y=x3+x280x+242{y}^2+{x}{y}+{y}={x}^3+{x}^2-80{x}+242
45.2-a10 45.2-a Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5589254280.558925428 0.499918100 1114544804970241405 \frac{1114544804970241}{405} [1 \bigl[1 , 1 1 , 1 1 , 2160 -2160 , 39540] -39540\bigr] y2+xy+y=x3+x22160x39540{y}^2+{x}{y}+{y}={x}^3+{x}^2-2160{x}-39540
45.2-b1 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.2794627140.279462714 1.999672402 339876269128271213599265100944259205a103581647331539806961853020188851841 -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} [a \bigl[a , 0 0 , a a , 395a+93 -395 a + 93 , 2916a+8171] -2916 a + 8171\bigr] y2+axy+ay=x3+(395a+93)x2916a+8171{y}^2+a{x}{y}+a{y}={x}^3+\left(-395a+93\right){x}-2916a+8171
45.2-b2 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.2794627140.279462714 1.999672402 339876269128271213599265100944259205a103581647331539806961853020188851841 \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} [a \bigl[a , 0 0 , a a , 395a+93 395 a + 93 , 2916a+8171] 2916 a + 8171\bigr] y2+axy+ay=x3+(395a+93)x+2916a+8171{y}^2+a{x}{y}+a{y}={x}^3+\left(395a+93\right){x}+2916a+8171
45.2-b3 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5589254280.558925428 1.999672402 147281603041215233605 -\frac{147281603041}{215233605} [a \bigl[a , 0 0 , a a , 107 -107 , 881] 881\bigr] y2+axy+ay=x3107x+881{y}^2+a{x}{y}+a{y}={x}^3-107{x}+881
45.2-b4 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 8.9428068508.942806850 1.999672402 115 -\frac{1}{15} [a \bigl[a , 0 0 , a a , 3 3 , 1] 1\bigr] y2+axy+ay=x3+3x+1{y}^2+a{x}{y}+a{y}={x}^3+3{x}+1
45.2-b5 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.1178508561.117850856 1.999672402 47331698393515625 \frac{4733169839}{3515625} [a \bigl[a , 0 0 , a a , 38 38 , 29] 29\bigr] y2+axy+ay=x3+38x+29{y}^2+a{x}{y}+a{y}={x}^3+38{x}+29
45.2-b6 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 2.2357017122.235701712 1.999672402 11128464150625 \frac{111284641}{50625} [a \bigl[a , 0 0 , a a , 7 -7 , 11] 11\bigr] y2+axy+ay=x37x+11{y}^2+a{x}{y}+a{y}={x}^3-7{x}+11
45.2-b7 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z SU(2)\mathrm{SU}(2) 11 4.4714034254.471403425 1.999672402 13997521225 \frac{13997521}{225} [a \bigl[a , 0 0 , a a , 2 -2 , 1] -1\bigr] y2+axy+ay=x32x1{y}^2+a{x}{y}+a{y}={x}^3-2{x}-1
45.2-b8 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2ZZ/4Z\Z/2\Z\oplus\Z/4\Z SU(2)\mathrm{SU}(2) 11 1.1178508561.117850856 1.999672402 272223782641164025 \frac{272223782641}{164025} [a \bigl[a , 0 0 , a a , 132 -132 , 661] 661\bigr] y2+axy+ay=x3132x+661{y}^2+a{x}{y}+a{y}={x}^3-132{x}+661
45.2-b9 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/2Z\Z/2\Z SU(2)\mathrm{SU}(2) 11 2.2357017122.235701712 1.999672402 5666735232115 \frac{56667352321}{15} [a \bigl[a , 0 0 , a a , 77 -77 , 241] -241\bigr] y2+axy+ay=x377x241{y}^2+a{x}{y}+a{y}={x}^3-77{x}-241
45.2-b10 45.2-b Q(5)\Q(\sqrt{-5}) 325 3^{2} \cdot 5 0 Z/4Z\Z/4\Z SU(2)\mathrm{SU}(2) 11 0.5589254280.558925428 1.999672402 1114544804970241405 \frac{1114544804970241}{405} [a \bigl[a , 0 0 , a a , 2157 -2157 , 39541] 39541\bigr] y2+axy+ay=x32157x+39541{y}^2+a{x}{y}+a{y}={x}^3-2157{x}+39541
50.1-a1 50.1-a Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.4241667461.424166746 1.273813462 3499380258 -\frac{349938025}{8} [1 \bigl[1 , 0 0 , 1 1 , 126 -126 , 552] -552\bigr] y2+xy+y=x3126x552{y}^2+{x}{y}+{y}={x}^3-126{x}-552
50.1-a2 50.1-a Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 4.2725002404.272500240 1.273813462 12194532 -\frac{121945}{32} [a \bigl[a , 0 0 , a a , 0 0 , 0] 0\bigr] y2+axy+ay=x3{y}^2+a{x}{y}+a{y}={x}^3
50.1-a3 50.1-a Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 0 Z/3Z\Z/3\Z SU(2)\mathrm{SU}(2) 11 4.2725002404.272500240 1.273813462 252 -\frac{25}{2} [1 \bigl[1 , 0 0 , 1 1 , 1 -1 , 2] -2\bigr] y2+xy+y=x3x2{y}^2+{x}{y}+{y}={x}^3-{x}-2
50.1-a4 50.1-a Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 0 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 11 1.4241667461.424166746 1.273813462 4696965532768 \frac{46969655}{32768} [a \bigl[a , 0 0 , a a , 25 25 , 10] 10\bigr] y2+axy+ay=x3+25x+10{y}^2+a{x}{y}+a{y}={x}^3+25{x}+10
50.1-b1 50.1-b Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.1946976290.194697629 1.4241667461.424166746 1.488050770 3499380258 -\frac{349938025}{8} [a \bigl[a , 1 1 , a a , 123 -123 , 553] 553\bigr] y2+axy+ay=x3+x2123x+553{y}^2+a{x}{y}+a{y}={x}^3+{x}^2-123{x}+553
50.1-b2 50.1-b Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 11 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 0.3244960490.324496049 4.2725002404.272500240 1.488050770 12194532 -\frac{121945}{32} [1 \bigl[1 , 1 1 , 1 1 , 3 -3 , 1] 1\bigr] y2+xy+y=x3+x23x+1{y}^2+{x}{y}+{y}={x}^3+{x}^2-3{x}+1
50.1-b3 50.1-b Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 11 trivial\mathsf{trivial} SU(2)\mathrm{SU}(2) 0.0648992090.064899209 4.2725002404.272500240 1.488050770 252 -\frac{25}{2} [a \bigl[a , 1 1 , a a , 2 2 , 3] 3\bigr] y2+axy+ay=x3+x2+2x+3{y}^2+a{x}{y}+a{y}={x}^3+{x}^2+2{x}+3
50.1-b4 50.1-b Q(5)\Q(\sqrt{-5}) 252 2 \cdot 5^{2} 11 Z/5Z\Z/5\Z SU(2)\mathrm{SU}(2) 0.9734881470.973488147 1.4241667461.424166746 1.488050770 4696965532768 \frac{46969655}{32768} [1 \bigl[1 , 1 1 , 1 1 , 22 22 , 9] -9\bigr] y2+xy+y=x3+x2+22x9{y}^2+{x}{y}+{y}={x}^3+{x}^2+22{x}-9
64.1-a1 64.1-a Q(5)\Q(\sqrt{-5}) 26 2^{6} 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4-4 N(U(1))N(\mathrm{U}(1)) 1.8994821721.899482172 6.8751858186.875185818 1.460073332 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 1 -1 , 0] 0\bigr] y2=x3x{y}^2={x}^3-{x}
64.1-a2 64.1-a Q(5)\Q(\sqrt{-5}) 26 2^{6} 11 Z/4Z\Z/4\Z 4-4 N(U(1))N(\mathrm{U}(1)) 0.9497410860.949741086 6.8751858186.875185818 1.460073332 1728 1728 [0 \bigl[0 , 0 0 , 0 0 , 4 4 , 0] 0\bigr] y2=x3+4x{y}^2={x}^3+4{x}
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.