Learn more

Refine search


Results (1-50 of 1782 matches)

Next   displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
16.1-a1 16.1-a \(\Q(\sqrt{-5}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.594800260$ 0.960927881 \( 2048 \) \( \bigl[0\) , \( -a\) , \( 0\) , \( 1\) , \( -a\bigr] \) ${y}^2={x}^3-a{x}^2+{x}-a$
16.1-a2 16.1-a \(\Q(\sqrt{-5}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.594800260$ 0.960927881 \( 78608 \) \( \bigl[a + 1\) , \( 1\) , \( a + 1\) , \( -a + 3\) , \( 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+{x}^2+\left(-a+3\right){x}+1$
16.1-b1 16.1-b \(\Q(\sqrt{-5}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.594800260$ 0.960927881 \( 2048 \) \( \bigl[0\) , \( a\) , \( 0\) , \( 1\) , \( a\bigr] \) ${y}^2={x}^3+a{x}^2+{x}+a$
16.1-b2 16.1-b \(\Q(\sqrt{-5}) \) \( 2^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.594800260$ 0.960927881 \( 78608 \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( -a + 3\) , \( -a + 1\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^3+\left(-a+1\right){x}^2+\left(-a+3\right){x}-a+1$
20.1-a1 20.1-a \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 0.478749283 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -36\) , \( -140\bigr] \) ${y}^2={x}^3+{x}^2-36{x}-140$
20.1-a2 20.1-a \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 0.478749283 \( \frac{21296}{25} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( 4\) , \( 4\bigr] \) ${y}^2={x}^3+{x}^2+4{x}+4$
20.1-a3 20.1-a \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/6\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 0.478749283 \( \frac{16384}{5} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3+{x}^2-{x}$
20.1-a4 20.1-a \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 0.478749283 \( \frac{488095744}{125} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -41\) , \( -116\bigr] \) ${y}^2={x}^3+{x}^2-41{x}-116$
20.1-b1 20.1-b \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 1.436247851 \( -\frac{20720464}{15625} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -36\) , \( 140\bigr] \) ${y}^2={x}^3-{x}^2-36{x}+140$
20.1-b2 20.1-b \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 1.436247851 \( \frac{21296}{25} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 4\) , \( -4\bigr] \) ${y}^2={x}^3-{x}^2+4{x}-4$
20.1-b3 20.1-b \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.423095656$ 1.436247851 \( \frac{16384}{5} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}^2-{x}$
20.1-b4 20.1-b \(\Q(\sqrt{-5}) \) \( 2^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.141031885$ 1.436247851 \( \frac{488095744}{125} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -41\) , \( 116\bigr] \) ${y}^2={x}^3-{x}^2-41{x}+116$
40.1-a1 40.1-a \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.233348375$ $2.996888981$ 1.250980172 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( -34\bigr] \) ${y}^2={x}^3+13{x}-34$
40.1-a2 40.1-a \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.466696751$ $5.993777963$ 1.250980172 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( -6\bigr] \) ${y}^2={x}^3-7{x}-6$
40.1-a3 40.1-a \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.933393502$ $5.993777963$ 1.250980172 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( 1\bigr] \) ${y}^2={x}^3-2{x}+1$
40.1-a4 40.1-a \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.933393502$ $2.996888981$ 1.250980172 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( -426\bigr] \) ${y}^2={x}^3-107{x}-426$
40.1-b1 40.1-b \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 1.340249496 \( \frac{237276}{625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 13\) , \( 34\bigr] \) ${y}^2={x}^3+13{x}+34$
40.1-b2 40.1-b \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 1.340249496 \( \frac{148176}{25} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -7\) , \( 6\bigr] \) ${y}^2={x}^3-7{x}+6$
40.1-b3 40.1-b \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $5.993777963$ 1.340249496 \( \frac{55296}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2\) , \( -1\bigr] \) ${y}^2={x}^3-2{x}-1$
40.1-b4 40.1-b \(\Q(\sqrt{-5}) \) \( 2^{3} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.996888981$ 1.340249496 \( \frac{132304644}{5} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -107\) , \( 426\bigr] \) ${y}^2={x}^3-107{x}+426$
45.2-a1 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279462714$ 0.499918100 \( -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -395 a + 90\) , \( 2916 a - 8170\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(-395a+90\right){x}+2916a-8170$
45.2-a2 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.279462714$ 0.499918100 \( \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 395 a + 90\) , \( -2916 a - 8170\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2+\left(395a+90\right){x}-2916a-8170$
45.2-a3 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.558925428$ 0.499918100 \( -\frac{147281603041}{215233605} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -110\) , \( -880\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-110{x}-880$
45.2-a4 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.942806850$ 0.499918100 \( -\frac{1}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2$
45.2-a5 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/8\Z$ $\mathrm{SU}(2)$ $1$ $1.117850856$ 0.499918100 \( \frac{4733169839}{3515625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 35\) , \( -28\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2+35{x}-28$
45.2-a6 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 0.499918100 \( \frac{111284641}{50625} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -10\) , \( -10\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-10{x}-10$
45.2-a7 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $4.471403425$ 0.499918100 \( \frac{13997521}{225} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -5\) , \( 2\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-5{x}+2$
45.2-a8 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.117850856$ 0.499918100 \( \frac{272223782641}{164025} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -135\) , \( -660\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-135{x}-660$
45.2-a9 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 0.499918100 \( \frac{56667352321}{15} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -80\) , \( 242\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-80{x}+242$
45.2-a10 45.2-a \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.558925428$ 0.499918100 \( \frac{1114544804970241}{405} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -2160\) , \( -39540\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-2160{x}-39540$
45.2-b1 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.279462714$ 1.999672402 \( -\frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -395 a + 93\) , \( -2916 a + 8171\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(-395a+93\right){x}-2916a+8171$
45.2-b2 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.279462714$ 1.999672402 \( \frac{33987626912827121359}{9265100944259205} a - \frac{10358164733153980696}{1853020188851841} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 395 a + 93\) , \( 2916 a + 8171\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+\left(395a+93\right){x}+2916a+8171$
45.2-b3 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.558925428$ 1.999672402 \( -\frac{147281603041}{215233605} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -107\) , \( 881\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-107{x}+881$
45.2-b4 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.942806850$ 1.999672402 \( -\frac{1}{15} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 3\) , \( 1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+3{x}+1$
45.2-b5 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.117850856$ 1.999672402 \( \frac{4733169839}{3515625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 38\) , \( 29\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+38{x}+29$
45.2-b6 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 1.999672402 \( \frac{111284641}{50625} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -7\) , \( 11\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-7{x}+11$
45.2-b7 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.471403425$ 1.999672402 \( \frac{13997521}{225} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -2\) , \( -1\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-2{x}-1$
45.2-b8 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $1.117850856$ 1.999672402 \( \frac{272223782641}{164025} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -132\) , \( 661\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-132{x}+661$
45.2-b9 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.235701712$ 1.999672402 \( \frac{56667352321}{15} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -77\) , \( -241\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-77{x}-241$
45.2-b10 45.2-b \(\Q(\sqrt{-5}) \) \( 3^{2} \cdot 5 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.558925428$ 1.999672402 \( \frac{1114544804970241}{405} \) \( \bigl[a\) , \( 0\) , \( a\) , \( -2157\) , \( 39541\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3-2157{x}+39541$
50.1-a1 50.1-a \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.424166746$ 1.273813462 \( -\frac{349938025}{8} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -126\) , \( -552\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-126{x}-552$
50.1-a2 50.1-a \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $4.272500240$ 1.273813462 \( -\frac{121945}{32} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 0\) , \( 0\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3$
50.1-a3 50.1-a \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) 0 $\Z/3\Z$ $\mathrm{SU}(2)$ $1$ $4.272500240$ 1.273813462 \( -\frac{25}{2} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( -1\) , \( -2\bigr] \) ${y}^2+{x}{y}+{y}={x}^3-{x}-2$
50.1-a4 50.1-a \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.424166746$ 1.273813462 \( \frac{46969655}{32768} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 25\) , \( 10\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+25{x}+10$
50.1-b1 50.1-b \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.194697629$ $1.424166746$ 1.488050770 \( -\frac{349938025}{8} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -123\) , \( 553\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2-123{x}+553$
50.1-b2 50.1-b \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) $1$ $\Z/5\Z$ $\mathrm{SU}(2)$ $0.324496049$ $4.272500240$ 1.488050770 \( -\frac{121945}{32} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( -3\) , \( 1\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2-3{x}+1$
50.1-b3 50.1-b \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.064899209$ $4.272500240$ 1.488050770 \( -\frac{25}{2} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 2\) , \( 3\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^3+{x}^2+2{x}+3$
50.1-b4 50.1-b \(\Q(\sqrt{-5}) \) \( 2 \cdot 5^{2} \) $1$ $\Z/5\Z$ $\mathrm{SU}(2)$ $0.973488147$ $1.424166746$ 1.488050770 \( \frac{46969655}{32768} \) \( \bigl[1\) , \( 1\) , \( 1\) , \( 22\) , \( -9\bigr] \) ${y}^2+{x}{y}+{y}={x}^3+{x}^2+22{x}-9$
64.1-a1 64.1-a \(\Q(\sqrt{-5}) \) \( 2^{6} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $-4$ $N(\mathrm{U}(1))$ $1.899482172$ $6.875185818$ 1.460073332 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -1\) , \( 0\bigr] \) ${y}^2={x}^3-{x}$
64.1-a2 64.1-a \(\Q(\sqrt{-5}) \) \( 2^{6} \) $1$ $\Z/4\Z$ $-4$ $N(\mathrm{U}(1))$ $0.949741086$ $6.875185818$ 1.460073332 \( 1728 \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 4\) , \( 0\bigr] \) ${y}^2={x}^3+4{x}$
Next   displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.