Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor norm at most 50000 over imaginary quadratic fields with absolute discriminant 11

Note: The completeness Only modular elliptic curves are included

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
4900.2-a1 4900.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.790132393$ $3.699948933$ 3.525812766 \( \frac{1367631}{2800} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( 2\) , \( -3\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}+2{x}-3$
4900.2-a2 4900.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.580264787$ $1.849974466$ 3.525812766 \( \frac{611960049}{122500} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -18\) , \( -19\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-18{x}-19$
4900.2-a3 4900.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.160529574$ $0.924987233$ 3.525812766 \( \frac{74565301329}{5468750} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -88\) , \( 317\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-88{x}+317$
4900.2-a4 4900.2-a \(\Q(\sqrt{-11}) \) \( 2^{2} \cdot 5^{2} \cdot 7^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.790132393$ $0.924987233$ 3.525812766 \( \frac{2121328796049}{120050} \) \( \bigl[1\) , \( -1\) , \( 1\) , \( -268\) , \( -1619\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}-{x}^{2}-268{x}-1619$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.