Learn more

Refine search


Results (15 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
17600.2-a1 17600.2-a \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.815641955$ $0.645316789$ 2.826160478 \( -\frac{4277626154}{21484375} a + \frac{98357937918}{21484375} \) \( \bigl[0\) , \( a\) , \( 0\) , \( -78 a - 19\) , \( 273 a - 146\bigr] \) ${y}^2={x}^{3}+a{x}^{2}+\left(-78a-19\right){x}+273a-146$
17600.2-b1 17600.2-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.755606858$ $0.746548340$ 6.322791243 \( \frac{2122416}{171875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 17\) , \( -318\bigr] \) ${y}^2={x}^{3}+17{x}-318$
17600.2-b2 17600.2-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.755606858$ $1.493096680$ 6.322791243 \( \frac{379275264}{15125} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -38\) , \( -87\bigr] \) ${y}^2={x}^{3}-38{x}-87$
17600.2-b3 17600.2-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.022427434$ $0.373274170$ 6.322791243 \( \frac{84964992917688}{2685546875} a + \frac{116907016674204}{2685546875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -360 a + 637\) , \( -952 a - 7234\bigr] \) ${y}^2={x}^{3}+\left(-360a+637\right){x}-952a-7234$
17600.2-b4 17600.2-b \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $2$ $\Z/2\Z$ $\mathrm{SU}(2)$ $7.022427434$ $0.373274170$ 6.322791243 \( -\frac{84964992917688}{2685546875} a + \frac{201872009591892}{2685546875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 360 a + 277\) , \( 952 a - 8186\bigr] \) ${y}^2={x}^{3}+\left(360a+277\right){x}+952a-8186$
17600.2-c1 17600.2-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579555891$ $1.723122481$ 3.282576040 \( \frac{510160032}{6875} a - \frac{617591088}{6875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -15 a + 37\) , \( -28 a - 66\bigr] \) ${y}^2={x}^{3}+\left(-15a+37\right){x}-28a-66$
17600.2-c2 17600.2-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579555891$ $1.723122481$ 3.282576040 \( -\frac{510160032}{6875} a - \frac{107431056}{6875} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 15 a + 22\) , \( 28 a - 94\bigr] \) ${y}^2={x}^{3}+\left(15a+22\right){x}+28a-94$
17600.2-c3 17600.2-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $0.789777945$ $3.446244963$ 3.282576040 \( \frac{55296}{275} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( 2\) , \( -3\bigr] \) ${y}^2={x}^{3}+2{x}-3$
17600.2-c4 17600.2-c \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.394888972$ $1.723122481$ 3.282576040 \( \frac{5256144}{605} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -23\) , \( -38\bigr] \) ${y}^2={x}^{3}-23{x}-38$
17600.2-d1 17600.2-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.079165717$ 1.718594068 \( -\frac{1957960715364}{29541015625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -2627\) , \( 269646\bigr] \) ${y}^2={x}^{3}-2627{x}+269646$
17600.2-d2 17600.2-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.079165717$ 1.718594068 \( \frac{46424454082884}{26794860125} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -7547\) , \( -12986\bigr] \) ${y}^2={x}^{3}-7547{x}-12986$
17600.2-d3 17600.2-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.158331435$ 1.718594068 \( \frac{55537159171536}{228765625} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -5047\) , \( 137514\bigr] \) ${y}^2={x}^{3}-5047{x}+137514$
17600.2-d4 17600.2-d \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $0.316662871$ 1.718594068 \( \frac{885956203616256}{15125} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -5042\) , \( 137801\bigr] \) ${y}^2={x}^{3}-5042{x}+137801$
17600.2-e1 17600.2-e \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1.815641955$ $0.645316789$ 2.826160478 \( \frac{4277626154}{21484375} a + \frac{94080311764}{21484375} \) \( \bigl[0\) , \( -a + 1\) , \( 0\) , \( 78 a - 97\) , \( -273 a + 127\bigr] \) ${y}^2={x}^{3}+\left(-a+1\right){x}^{2}+\left(78a-97\right){x}-273a+127$
17600.2-f1 17600.2-f \(\Q(\sqrt{-11}) \) \( 2^{6} \cdot 5^{2} \cdot 11 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.035496722$ 11.23970432 \( -\frac{16241202}{1375} \) \( \bigl[0\) , \( 0\) , \( 0\) , \( -67\) , \( -226\bigr] \) ${y}^2={x}^{3}-67{x}-226$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.