sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(980, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([42,63,52]))
pari:[g,chi] = znchar(Mod(443,980))
Modulus: | \(980\) | |
Conductor: | \(980\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(84\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{980}(23,\cdot)\)
\(\chi_{980}(107,\cdot)\)
\(\chi_{980}(123,\cdot)\)
\(\chi_{980}(163,\cdot)\)
\(\chi_{980}(207,\cdot)\)
\(\chi_{980}(247,\cdot)\)
\(\chi_{980}(303,\cdot)\)
\(\chi_{980}(347,\cdot)\)
\(\chi_{980}(387,\cdot)\)
\(\chi_{980}(403,\cdot)\)
\(\chi_{980}(443,\cdot)\)
\(\chi_{980}(487,\cdot)\)
\(\chi_{980}(527,\cdot)\)
\(\chi_{980}(543,\cdot)\)
\(\chi_{980}(583,\cdot)\)
\(\chi_{980}(627,\cdot)\)
\(\chi_{980}(683,\cdot)\)
\(\chi_{980}(723,\cdot)\)
\(\chi_{980}(767,\cdot)\)
\(\chi_{980}(807,\cdot)\)
\(\chi_{980}(823,\cdot)\)
\(\chi_{980}(907,\cdot)\)
\(\chi_{980}(947,\cdot)\)
\(\chi_{980}(963,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((491,197,101)\) → \((-1,-i,e\left(\frac{13}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 980 }(443, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{23}{84}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)