Properties

Label 860.523
Modulus $860$
Conductor $860$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(860, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,9,10]))
 
Copy content pari:[g,chi] = znchar(Mod(523,860))
 

Basic properties

Modulus: \(860\)
Conductor: \(860\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 860.w

\(\chi_{860}(7,\cdot)\) \(\chi_{860}(123,\cdot)\) \(\chi_{860}(467,\cdot)\) \(\chi_{860}(523,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.172891858506273992000000000.1

Values on generators

\((431,517,261)\) → \((-1,-i,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 860 }(523, a) \) \(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)\(e\left(\frac{1}{12}\right)\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 860 }(523,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 860 }(523,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 860 }(523,·),\chi_{ 860 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 860 }(523,·)) \;\) at \(\; a,b = \) e.g. 1,2