sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(845, base_ring=CyclotomicField(156))
M = H._module
chi = DirichletCharacter(H, M([117,41]))
pari:[g,chi] = znchar(Mod(58,845))
Modulus: | \(845\) | |
Conductor: | \(845\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(156\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{845}(7,\cdot)\)
\(\chi_{845}(28,\cdot)\)
\(\chi_{845}(37,\cdot)\)
\(\chi_{845}(58,\cdot)\)
\(\chi_{845}(72,\cdot)\)
\(\chi_{845}(93,\cdot)\)
\(\chi_{845}(102,\cdot)\)
\(\chi_{845}(123,\cdot)\)
\(\chi_{845}(137,\cdot)\)
\(\chi_{845}(158,\cdot)\)
\(\chi_{845}(167,\cdot)\)
\(\chi_{845}(202,\cdot)\)
\(\chi_{845}(223,\cdot)\)
\(\chi_{845}(232,\cdot)\)
\(\chi_{845}(253,\cdot)\)
\(\chi_{845}(267,\cdot)\)
\(\chi_{845}(288,\cdot)\)
\(\chi_{845}(297,\cdot)\)
\(\chi_{845}(318,\cdot)\)
\(\chi_{845}(332,\cdot)\)
\(\chi_{845}(353,\cdot)\)
\(\chi_{845}(362,\cdot)\)
\(\chi_{845}(383,\cdot)\)
\(\chi_{845}(397,\cdot)\)
\(\chi_{845}(448,\cdot)\)
\(\chi_{845}(462,\cdot)\)
\(\chi_{845}(483,\cdot)\)
\(\chi_{845}(492,\cdot)\)
\(\chi_{845}(513,\cdot)\)
\(\chi_{845}(527,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,171)\) → \((-i,e\left(\frac{41}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 845 }(58, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{133}{156}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)