Properties

Label 8415.367
Modulus $8415$
Conductor $8415$
Order $240$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8415, base_ring=CyclotomicField(240)) M = H._module chi = DirichletCharacter(H, M([160,60,48,45]))
 
Copy content pari:[g,chi] = znchar(Mod(367,8415))
 

Basic properties

Modulus: \(8415\)
Conductor: \(8415\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(240\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8415.kp

\(\chi_{8415}(148,\cdot)\) \(\chi_{8415}(328,\cdot)\) \(\chi_{8415}(367,\cdot)\) \(\chi_{8415}(598,\cdot)\) \(\chi_{8415}(643,\cdot)\) \(\chi_{8415}(652,\cdot)\) \(\chi_{8415}(742,\cdot)\) \(\chi_{8415}(907,\cdot)\) \(\chi_{8415}(1093,\cdot)\) \(\chi_{8415}(1417,\cdot)\) \(\chi_{8415}(1642,\cdot)\) \(\chi_{8415}(1897,\cdot)\) \(\chi_{8415}(2128,\cdot)\) \(\chi_{8415}(2182,\cdot)\) \(\chi_{8415}(2302,\cdot)\) \(\chi_{8415}(2407,\cdot)\) \(\chi_{8415}(2623,\cdot)\) \(\chi_{8415}(2698,\cdot)\) \(\chi_{8415}(3067,\cdot)\) \(\chi_{8415}(3172,\cdot)\) \(\chi_{8415}(3193,\cdot)\) \(\chi_{8415}(3292,\cdot)\) \(\chi_{8415}(3463,\cdot)\) \(\chi_{8415}(3712,\cdot)\) \(\chi_{8415}(3832,\cdot)\) \(\chi_{8415}(3958,\cdot)\) \(\chi_{8415}(4057,\cdot)\) \(\chi_{8415}(4228,\cdot)\) \(\chi_{8415}(4678,\cdot)\) \(\chi_{8415}(4702,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{240})$
Fixed field: Number field defined by a degree 240 polynomial (not computed)

Values on generators

\((7481,3367,1531,496)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{1}{5}\right),e\left(\frac{3}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(13\)\(14\)\(16\)\(19\)\(23\)\(26\)
\( \chi_{ 8415 }(367, a) \) \(1\)\(1\)\(e\left(\frac{89}{120}\right)\)\(e\left(\frac{29}{60}\right)\)\(e\left(\frac{91}{240}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{29}{240}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{29}{40}\right)\)\(e\left(\frac{43}{48}\right)\)\(e\left(\frac{31}{40}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8415 }(367,a) \;\) at \(\;a = \) e.g. 2