sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8415, base_ring=CyclotomicField(240))
M = H._module
chi = DirichletCharacter(H, M([160,60,48,45]))
pari:[g,chi] = znchar(Mod(367,8415))
| Modulus: | \(8415\) | |
| Conductor: | \(8415\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(240\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8415}(148,\cdot)\)
\(\chi_{8415}(328,\cdot)\)
\(\chi_{8415}(367,\cdot)\)
\(\chi_{8415}(598,\cdot)\)
\(\chi_{8415}(643,\cdot)\)
\(\chi_{8415}(652,\cdot)\)
\(\chi_{8415}(742,\cdot)\)
\(\chi_{8415}(907,\cdot)\)
\(\chi_{8415}(1093,\cdot)\)
\(\chi_{8415}(1417,\cdot)\)
\(\chi_{8415}(1642,\cdot)\)
\(\chi_{8415}(1897,\cdot)\)
\(\chi_{8415}(2128,\cdot)\)
\(\chi_{8415}(2182,\cdot)\)
\(\chi_{8415}(2302,\cdot)\)
\(\chi_{8415}(2407,\cdot)\)
\(\chi_{8415}(2623,\cdot)\)
\(\chi_{8415}(2698,\cdot)\)
\(\chi_{8415}(3067,\cdot)\)
\(\chi_{8415}(3172,\cdot)\)
\(\chi_{8415}(3193,\cdot)\)
\(\chi_{8415}(3292,\cdot)\)
\(\chi_{8415}(3463,\cdot)\)
\(\chi_{8415}(3712,\cdot)\)
\(\chi_{8415}(3832,\cdot)\)
\(\chi_{8415}(3958,\cdot)\)
\(\chi_{8415}(4057,\cdot)\)
\(\chi_{8415}(4228,\cdot)\)
\(\chi_{8415}(4678,\cdot)\)
\(\chi_{8415}(4702,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7481,3367,1531,496)\) → \((e\left(\frac{2}{3}\right),i,e\left(\frac{1}{5}\right),e\left(\frac{3}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(13\) | \(14\) | \(16\) | \(19\) | \(23\) | \(26\) |
| \( \chi_{ 8415 }(367, a) \) |
\(1\) | \(1\) | \(e\left(\frac{89}{120}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{91}{240}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{29}{240}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{29}{40}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{31}{40}\right)\) |
sage:chi.jacobi_sum(n)