Properties

Modulus $840$
Structure \(C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\)
Order $192$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(840)
 
Copy content pari:g = idealstar(,840,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 192
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{840}(631,\cdot)$, $\chi_{840}(421,\cdot)$, $\chi_{840}(281,\cdot)$, $\chi_{840}(337,\cdot)$, $\chi_{840}(241,\cdot)$

First 32 of 192 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{840}(1,\cdot)\) 840.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{840}(11,\cdot)\) 840.cq 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)
\(\chi_{840}(13,\cdot)\) 840.bj 4 no \(1\) \(1\) \(-1\) \(i\) \(i\) \(-1\) \(i\) \(1\) \(-1\) \(i\) \(-1\) \(-i\)
\(\chi_{840}(17,\cdot)\) 840.dn 12 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-i\)
\(\chi_{840}(19,\cdot)\) 840.bz 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\)
\(\chi_{840}(23,\cdot)\) 840.df 12 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-i\)
\(\chi_{840}(29,\cdot)\) 840.be 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{840}(31,\cdot)\) 840.cr 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\)
\(\chi_{840}(37,\cdot)\) 840.dm 12 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(i\)
\(\chi_{840}(41,\cdot)\) 840.f 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{840}(43,\cdot)\) 840.br 4 no \(1\) \(1\) \(1\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\) \(i\)
\(\chi_{840}(47,\cdot)\) 840.di 12 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(i\)
\(\chi_{840}(53,\cdot)\) 840.dc 12 yes \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(-i\)
\(\chi_{840}(59,\cdot)\) 840.ct 6 yes \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)
\(\chi_{840}(61,\cdot)\) 840.cy 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)
\(\chi_{840}(67,\cdot)\) 840.dj 12 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(-i\)
\(\chi_{840}(71,\cdot)\) 840.ba 2 no \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\)
\(\chi_{840}(73,\cdot)\) 840.dd 12 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(i\)
\(\chi_{840}(79,\cdot)\) 840.cs 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)
\(\chi_{840}(83,\cdot)\) 840.bm 4 yes \(1\) \(1\) \(-1\) \(i\) \(-i\) \(1\) \(i\) \(-1\) \(1\) \(i\) \(1\) \(i\)
\(\chi_{840}(89,\cdot)\) 840.da 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)
\(\chi_{840}(97,\cdot)\) 840.bt 4 no \(1\) \(1\) \(1\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(i\) \(-1\) \(-i\)
\(\chi_{840}(101,\cdot)\) 840.cf 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)
\(\chi_{840}(103,\cdot)\) 840.do 12 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-i\)
\(\chi_{840}(107,\cdot)\) 840.dp 12 yes \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-i\)
\(\chi_{840}(109,\cdot)\) 840.db 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)
\(\chi_{840}(113,\cdot)\) 840.bk 4 no \(1\) \(1\) \(-1\) \(i\) \(i\) \(-1\) \(-i\) \(1\) \(1\) \(-i\) \(-1\) \(i\)
\(\chi_{840}(121,\cdot)\) 840.bg 3 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)
\(\chi_{840}(127,\cdot)\) 840.bl 4 no \(1\) \(1\) \(-1\) \(-i\) \(i\) \(1\) \(i\) \(-1\) \(-1\) \(i\) \(1\) \(i\)
\(\chi_{840}(131,\cdot)\) 840.cw 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)
\(\chi_{840}(137,\cdot)\) 840.dq 12 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(-i\)
\(\chi_{840}(139,\cdot)\) 840.w 2 no \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)
Click here to search among the remaining 160 characters.