Properties

Label 833.811
Modulus $833$
Conductor $833$
Order $112$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(112)) M = H._module chi = DirichletCharacter(H, M([8,91]))
 
Copy content pari:[g,chi] = znchar(Mod(811,833))
 

Basic properties

Modulus: \(833\)
Conductor: \(833\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(112\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 833.bi

\(\chi_{833}(6,\cdot)\) \(\chi_{833}(20,\cdot)\) \(\chi_{833}(27,\cdot)\) \(\chi_{833}(41,\cdot)\) \(\chi_{833}(62,\cdot)\) \(\chi_{833}(90,\cdot)\) \(\chi_{833}(125,\cdot)\) \(\chi_{833}(139,\cdot)\) \(\chi_{833}(160,\cdot)\) \(\chi_{833}(167,\cdot)\) \(\chi_{833}(181,\cdot)\) \(\chi_{833}(209,\cdot)\) \(\chi_{833}(216,\cdot)\) \(\chi_{833}(258,\cdot)\) \(\chi_{833}(265,\cdot)\) \(\chi_{833}(279,\cdot)\) \(\chi_{833}(286,\cdot)\) \(\chi_{833}(300,\cdot)\) \(\chi_{833}(328,\cdot)\) \(\chi_{833}(335,\cdot)\) \(\chi_{833}(363,\cdot)\) \(\chi_{833}(377,\cdot)\) \(\chi_{833}(384,\cdot)\) \(\chi_{833}(398,\cdot)\) \(\chi_{833}(405,\cdot)\) \(\chi_{833}(419,\cdot)\) \(\chi_{833}(447,\cdot)\) \(\chi_{833}(454,\cdot)\) \(\chi_{833}(482,\cdot)\) \(\chi_{833}(496,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{112})$
Fixed field: Number field defined by a degree 112 polynomial (not computed)

Values on generators

\((52,785)\) → \((e\left(\frac{1}{14}\right),e\left(\frac{13}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 833 }(811, a) \) \(1\)\(1\)\(e\left(\frac{13}{56}\right)\)\(e\left(\frac{99}{112}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{15}{112}\right)\)\(e\left(\frac{13}{112}\right)\)\(e\left(\frac{39}{56}\right)\)\(e\left(\frac{43}{56}\right)\)\(e\left(\frac{41}{112}\right)\)\(e\left(\frac{61}{112}\right)\)\(e\left(\frac{39}{112}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 833 }(811,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 833 }(811,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 833 }(811,·),\chi_{ 833 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 833 }(811,·)) \;\) at \(\; a,b = \) e.g. 1,2