sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(805, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,44,12]))
pari:[g,chi] = znchar(Mod(4,805))
Modulus: | \(805\) | |
Conductor: | \(805\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{805}(4,\cdot)\)
\(\chi_{805}(9,\cdot)\)
\(\chi_{805}(39,\cdot)\)
\(\chi_{805}(144,\cdot)\)
\(\chi_{805}(179,\cdot)\)
\(\chi_{805}(219,\cdot)\)
\(\chi_{805}(284,\cdot)\)
\(\chi_{805}(289,\cdot)\)
\(\chi_{805}(324,\cdot)\)
\(\chi_{805}(354,\cdot)\)
\(\chi_{805}(394,\cdot)\)
\(\chi_{805}(464,\cdot)\)
\(\chi_{805}(499,\cdot)\)
\(\chi_{805}(564,\cdot)\)
\(\chi_{805}(604,\cdot)\)
\(\chi_{805}(634,\cdot)\)
\(\chi_{805}(639,\cdot)\)
\(\chi_{805}(669,\cdot)\)
\(\chi_{805}(739,\cdot)\)
\(\chi_{805}(744,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((162,346,281)\) → \((-1,e\left(\frac{2}{3}\right),e\left(\frac{2}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 805 }(4, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{13}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{26}{33}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)