Properties

Label 805.243
Modulus $805$
Conductor $805$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(805, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([99,110,84]))
 
Copy content pari:[g,chi] = znchar(Mod(243,805))
 

Basic properties

Modulus: \(805\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 805.bv

\(\chi_{805}(3,\cdot)\) \(\chi_{805}(12,\cdot)\) \(\chi_{805}(52,\cdot)\) \(\chi_{805}(73,\cdot)\) \(\chi_{805}(82,\cdot)\) \(\chi_{805}(87,\cdot)\) \(\chi_{805}(108,\cdot)\) \(\chi_{805}(117,\cdot)\) \(\chi_{805}(173,\cdot)\) \(\chi_{805}(187,\cdot)\) \(\chi_{805}(192,\cdot)\) \(\chi_{805}(213,\cdot)\) \(\chi_{805}(243,\cdot)\) \(\chi_{805}(248,\cdot)\) \(\chi_{805}(257,\cdot)\) \(\chi_{805}(262,\cdot)\) \(\chi_{805}(278,\cdot)\) \(\chi_{805}(292,\cdot)\) \(\chi_{805}(348,\cdot)\) \(\chi_{805}(353,\cdot)\) \(\chi_{805}(397,\cdot)\) \(\chi_{805}(418,\cdot)\) \(\chi_{805}(423,\cdot)\) \(\chi_{805}(432,\cdot)\) \(\chi_{805}(453,\cdot)\) \(\chi_{805}(472,\cdot)\) \(\chi_{805}(537,\cdot)\) \(\chi_{805}(542,\cdot)\) \(\chi_{805}(558,\cdot)\) \(\chi_{805}(577,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((162,346,281)\) → \((-i,e\left(\frac{5}{6}\right),e\left(\frac{7}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 805 }(243, a) \) \(1\)\(1\)\(e\left(\frac{91}{132}\right)\)\(e\left(\frac{35}{132}\right)\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{85}{132}\right)\)\(e\left(\frac{29}{44}\right)\)\(e\left(\frac{25}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 805 }(243,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 805 }(243,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 805 }(243,·),\chi_{ 805 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 805 }(243,·)) \;\) at \(\; a,b = \) e.g. 1,2