sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(792, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,20,21]))
pari:[g,chi] = znchar(Mod(205,792))
| Modulus: | \(792\) | |
| Conductor: | \(792\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{792}(13,\cdot)\)
\(\chi_{792}(61,\cdot)\)
\(\chi_{792}(85,\cdot)\)
\(\chi_{792}(205,\cdot)\)
\(\chi_{792}(277,\cdot)\)
\(\chi_{792}(349,\cdot)\)
\(\chi_{792}(589,\cdot)\)
\(\chi_{792}(733,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((199,397,353,145)\) → \((1,-1,e\left(\frac{2}{3}\right),e\left(\frac{7}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 792 }(205, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)