Properties

Label 755.722
Modulus $755$
Conductor $755$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(755, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([3,8]))
 
Copy content pari:[g,chi] = znchar(Mod(722,755))
 

Basic properties

Modulus: \(755\)
Conductor: \(755\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 755.o

\(\chi_{755}(32,\cdot)\) \(\chi_{755}(118,\cdot)\) \(\chi_{755}(183,\cdot)\) \(\chi_{755}(722,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.527892652592053126953125.2

Values on generators

\((152,6)\) → \((i,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 755 }(722, a) \) \(-1\)\(1\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(-1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 755 }(722,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 755 }(722,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 755 }(722,·),\chi_{ 755 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 755 }(722,·)) \;\) at \(\; a,b = \) e.g. 1,2