Properties

Label 715.688
Modulus $715$
Conductor $715$
Order $20$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(715, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([15,18,10]))
 
Copy content pari:[g,chi] = znchar(Mod(688,715))
 

Basic properties

Modulus: \(715\)
Conductor: \(715\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 715.cb

\(\chi_{715}(233,\cdot)\) \(\chi_{715}(272,\cdot)\) \(\chi_{715}(337,\cdot)\) \(\chi_{715}(402,\cdot)\) \(\chi_{715}(558,\cdot)\) \(\chi_{715}(623,\cdot)\) \(\chi_{715}(662,\cdot)\) \(\chi_{715}(688,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((287,651,496)\) → \((-i,e\left(\frac{9}{10}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(14\)\(16\)
\( \chi_{ 715 }(688, a) \) \(1\)\(1\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(-i\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 715 }(688,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 715 }(688,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 715 }(688,·),\chi_{ 715 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 715 }(688,·)) \;\) at \(\; a,b = \) e.g. 1,2