Properties

Modulus $695$
Structure \(C_{2}\times C_{276}\)
Order $552$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(695)
 
Copy content pari:g = idealstar(,695,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 552
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{276}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{695}(557,\cdot)$, $\chi_{695}(141,\cdot)$

First 32 of 552 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(13\)
\(\chi_{695}(1,\cdot)\) 695.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{695}(2,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{71}{276}\right)\) \(e\left(\frac{13}{276}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{169}{276}\right)\) \(e\left(\frac{71}{92}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{155}{276}\right)\) \(e\left(\frac{59}{276}\right)\)
\(\chi_{695}(3,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{13}{276}\right)\) \(e\left(\frac{119}{276}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{167}{276}\right)\) \(e\left(\frac{13}{92}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{145}{276}\right)\) \(e\left(\frac{73}{276}\right)\)
\(\chi_{695}(4,\cdot)\) 695.t 138 yes \(1\) \(1\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{59}{138}\right)\)
\(\chi_{695}(6,\cdot)\) 695.m 23 no \(1\) \(1\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{11}{23}\right)\)
\(\chi_{695}(7,\cdot)\) 695.x 276 yes \(-1\) \(1\) \(e\left(\frac{169}{276}\right)\) \(e\left(\frac{167}{276}\right)\) \(e\left(\frac{31}{138}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{101}{276}\right)\) \(e\left(\frac{77}{92}\right)\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{229}{276}\right)\) \(e\left(\frac{259}{276}\right)\)
\(\chi_{695}(8,\cdot)\) 695.r 92 yes \(1\) \(1\) \(e\left(\frac{71}{92}\right)\) \(e\left(\frac{13}{92}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{77}{92}\right)\) \(e\left(\frac{29}{92}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{63}{92}\right)\) \(e\left(\frac{59}{92}\right)\)
\(\chi_{695}(9,\cdot)\) 695.t 138 yes \(1\) \(1\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{73}{138}\right)\)
\(\chi_{695}(11,\cdot)\) 695.q 69 no \(1\) \(1\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{17}{69}\right)\)
\(\chi_{695}(12,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{155}{276}\right)\) \(e\left(\frac{145}{276}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{229}{276}\right)\) \(e\left(\frac{63}{92}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{179}{276}\right)\) \(e\left(\frac{191}{276}\right)\)
\(\chi_{695}(13,\cdot)\) 695.x 276 yes \(-1\) \(1\) \(e\left(\frac{59}{276}\right)\) \(e\left(\frac{73}{276}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{259}{276}\right)\) \(e\left(\frac{59}{92}\right)\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{191}{276}\right)\) \(e\left(\frac{257}{276}\right)\)
\(\chi_{695}(14,\cdot)\) 695.n 46 yes \(-1\) \(1\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{7}{46}\right)\)
\(\chi_{695}(16,\cdot)\) 695.q 69 no \(1\) \(1\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{59}{69}\right)\)
\(\chi_{695}(17,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{7}{276}\right)\) \(e\left(\frac{149}{276}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{5}{276}\right)\) \(e\left(\frac{7}{92}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{163}{276}\right)\) \(e\left(\frac{103}{276}\right)\)
\(\chi_{695}(18,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{97}{276}\right)\) \(e\left(\frac{251}{276}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{227}{276}\right)\) \(e\left(\frac{5}{92}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{169}{276}\right)\) \(e\left(\frac{205}{276}\right)\)
\(\chi_{695}(19,\cdot)\) 695.v 138 yes \(-1\) \(1\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{109}{138}\right)\)
\(\chi_{695}(21,\cdot)\) 695.u 138 no \(-1\) \(1\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{5}{138}\right)\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{49}{138}\right)\) \(e\left(\frac{14}{69}\right)\)
\(\chi_{695}(22,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{223}{276}\right)\) \(e\left(\frac{173}{276}\right)\) \(e\left(\frac{85}{138}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{41}{276}\right)\) \(e\left(\frac{39}{92}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{67}{276}\right)\) \(e\left(\frac{127}{276}\right)\)
\(\chi_{695}(23,\cdot)\) 695.r 92 yes \(1\) \(1\) \(e\left(\frac{87}{92}\right)\) \(e\left(\frac{25}{92}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{49}{92}\right)\) \(e\left(\frac{77}{92}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{15}{92}\right)\) \(e\left(\frac{71}{92}\right)\)
\(\chi_{695}(24,\cdot)\) 695.t 138 yes \(1\) \(1\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{29}{138}\right)\) \(e\left(\frac{125}{138}\right)\)
\(\chi_{695}(26,\cdot)\) 695.u 138 no \(-1\) \(1\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{43}{138}\right)\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{10}{69}\right)\)
\(\chi_{695}(27,\cdot)\) 695.r 92 yes \(1\) \(1\) \(e\left(\frac{13}{92}\right)\) \(e\left(\frac{27}{92}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{75}{92}\right)\) \(e\left(\frac{39}{92}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{53}{92}\right)\) \(e\left(\frac{73}{92}\right)\)
\(\chi_{695}(28,\cdot)\) 695.x 276 yes \(-1\) \(1\) \(e\left(\frac{35}{276}\right)\) \(e\left(\frac{193}{276}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{163}{276}\right)\) \(e\left(\frac{35}{92}\right)\) \(e\left(\frac{55}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{263}{276}\right)\) \(e\left(\frac{101}{276}\right)\)
\(\chi_{695}(29,\cdot)\) 695.t 138 yes \(1\) \(1\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{77}{138}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{13}{138}\right)\)
\(\chi_{695}(31,\cdot)\) 695.q 69 no \(1\) \(1\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{67}{69}\right)\)
\(\chi_{695}(32,\cdot)\) 695.w 276 yes \(1\) \(1\) \(e\left(\frac{79}{276}\right)\) \(e\left(\frac{65}{276}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{17}{276}\right)\) \(e\left(\frac{79}{92}\right)\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{223}{276}\right)\) \(e\left(\frac{19}{276}\right)\)
\(\chi_{695}(33,\cdot)\) 695.r 92 yes \(1\) \(1\) \(e\left(\frac{55}{92}\right)\) \(e\left(\frac{1}{92}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{13}{92}\right)\) \(e\left(\frac{73}{92}\right)\) \(e\left(\frac{1}{46}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{19}{92}\right)\) \(e\left(\frac{47}{92}\right)\)
\(\chi_{695}(34,\cdot)\) 695.p 46 yes \(1\) \(1\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{27}{46}\right)\)
\(\chi_{695}(36,\cdot)\) 695.m 23 no \(1\) \(1\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{22}{23}\right)\)
\(\chi_{695}(37,\cdot)\) 695.x 276 yes \(-1\) \(1\) \(e\left(\frac{229}{276}\right)\) \(e\left(\frac{143}{276}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{65}{276}\right)\) \(e\left(\frac{45}{92}\right)\) \(e\left(\frac{5}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{49}{276}\right)\) \(e\left(\frac{235}{276}\right)\)
\(\chi_{695}(38,\cdot)\) 695.x 276 yes \(-1\) \(1\) \(e\left(\frac{55}{276}\right)\) \(e\left(\frac{185}{276}\right)\) \(e\left(\frac{55}{138}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{59}{276}\right)\) \(e\left(\frac{55}{92}\right)\) \(e\left(\frac{47}{138}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{19}{276}\right)\) \(e\left(\frac{1}{276}\right)\)
\(\chi_{695}(39,\cdot)\) 695.n 46 yes \(-1\) \(1\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{9}{46}\right)\)
Click here to search among the remaining 520 characters.