Properties

Label 67.42
Modulus $67$
Conductor $67$
Order $22$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(67, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([21]))
 
Copy content pari:[g,chi] = znchar(Mod(42,67))
 

Basic properties

Modulus: \(67\)
Conductor: \(67\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 67.f

\(\chi_{67}(3,\cdot)\) \(\chi_{67}(5,\cdot)\) \(\chi_{67}(8,\cdot)\) \(\chi_{67}(27,\cdot)\) \(\chi_{67}(42,\cdot)\) \(\chi_{67}(43,\cdot)\) \(\chi_{67}(45,\cdot)\) \(\chi_{67}(52,\cdot)\) \(\chi_{67}(53,\cdot)\) \(\chi_{67}(58,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\(2\) → \(e\left(\frac{21}{22}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 67 }(42, a) \) \(-1\)\(1\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{7}{22}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 67 }(42,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 67 }(42,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 67 }(42,·),\chi_{ 67 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 67 }(42,·)) \;\) at \(\; a,b = \) e.g. 1,2