sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(67, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([28]))
pari:[g,chi] = znchar(Mod(23,67))
Modulus: | \(67\) | |
Conductor: | \(67\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(33\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{67}(4,\cdot)\)
\(\chi_{67}(6,\cdot)\)
\(\chi_{67}(10,\cdot)\)
\(\chi_{67}(16,\cdot)\)
\(\chi_{67}(17,\cdot)\)
\(\chi_{67}(19,\cdot)\)
\(\chi_{67}(21,\cdot)\)
\(\chi_{67}(23,\cdot)\)
\(\chi_{67}(26,\cdot)\)
\(\chi_{67}(33,\cdot)\)
\(\chi_{67}(35,\cdot)\)
\(\chi_{67}(36,\cdot)\)
\(\chi_{67}(39,\cdot)\)
\(\chi_{67}(47,\cdot)\)
\(\chi_{67}(49,\cdot)\)
\(\chi_{67}(54,\cdot)\)
\(\chi_{67}(55,\cdot)\)
\(\chi_{67}(56,\cdot)\)
\(\chi_{67}(60,\cdot)\)
\(\chi_{67}(65,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{14}{33}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 67 }(23, a) \) |
\(1\) | \(1\) | \(e\left(\frac{14}{33}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{1}{33}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)