sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(67, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([59]))
pari:[g,chi] = znchar(Mod(11,67))
Modulus: | \(67\) | |
Conductor: | \(67\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{67}(2,\cdot)\)
\(\chi_{67}(7,\cdot)\)
\(\chi_{67}(11,\cdot)\)
\(\chi_{67}(12,\cdot)\)
\(\chi_{67}(13,\cdot)\)
\(\chi_{67}(18,\cdot)\)
\(\chi_{67}(20,\cdot)\)
\(\chi_{67}(28,\cdot)\)
\(\chi_{67}(31,\cdot)\)
\(\chi_{67}(32,\cdot)\)
\(\chi_{67}(34,\cdot)\)
\(\chi_{67}(41,\cdot)\)
\(\chi_{67}(44,\cdot)\)
\(\chi_{67}(46,\cdot)\)
\(\chi_{67}(48,\cdot)\)
\(\chi_{67}(50,\cdot)\)
\(\chi_{67}(51,\cdot)\)
\(\chi_{67}(57,\cdot)\)
\(\chi_{67}(61,\cdot)\)
\(\chi_{67}(63,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{59}{66}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 67 }(11, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{59}{66}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{26}{33}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{37}{66}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{33}\right)\) | \(e\left(\frac{49}{66}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)