![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(669, base_ring=CyclotomicField(74))
M = H._module
chi = DirichletCharacter(H, M([37,19]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(669, base_ring=CyclotomicField(74))
M = H._module
chi = DirichletCharacter(H, M([37,19]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(209,669))
        pari:[g,chi] = znchar(Mod(209,669))
         
     
    
  
   | Modulus: | \(669\) |  | 
   | Conductor: | \(669\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(74\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{669}(26,\cdot)\)
  \(\chi_{669}(59,\cdot)\)
  \(\chi_{669}(95,\cdot)\)
  \(\chi_{669}(104,\cdot)\)
  \(\chi_{669}(125,\cdot)\)
  \(\chi_{669}(155,\cdot)\)
  \(\chi_{669}(167,\cdot)\)
  \(\chi_{669}(182,\cdot)\)
  \(\chi_{669}(191,\cdot)\)
  \(\chi_{669}(206,\cdot)\)
  \(\chi_{669}(209,\cdot)\)
  \(\chi_{669}(215,\cdot)\)
  \(\chi_{669}(221,\cdot)\)
  \(\chi_{669}(236,\cdot)\)
  \(\chi_{669}(275,\cdot)\)
  \(\chi_{669}(314,\cdot)\)
  \(\chi_{669}(326,\cdot)\)
  \(\chi_{669}(341,\cdot)\)
  \(\chi_{669}(380,\cdot)\)
  \(\chi_{669}(386,\cdot)\)
  \(\chi_{669}(413,\cdot)\)
  \(\chi_{669}(416,\cdot)\)
  \(\chi_{669}(431,\cdot)\)
  \(\chi_{669}(473,\cdot)\)
  \(\chi_{669}(500,\cdot)\)
  \(\chi_{669}(533,\cdot)\)
  \(\chi_{669}(554,\cdot)\)
  \(\chi_{669}(557,\cdot)\)
  \(\chi_{669}(587,\cdot)\)
  \(\chi_{669}(605,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((224,226)\) → \((-1,e\left(\frac{19}{74}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) | 
    
    
      | \( \chi_{ 669 }(209, a) \) | \(1\) | \(1\) | \(e\left(\frac{53}{74}\right)\) | \(e\left(\frac{16}{37}\right)\) | \(e\left(\frac{13}{37}\right)\) | \(e\left(\frac{34}{37}\right)\) | \(e\left(\frac{11}{74}\right)\) | \(e\left(\frac{5}{74}\right)\) | \(e\left(\frac{36}{37}\right)\) | \(e\left(\frac{55}{74}\right)\) | \(e\left(\frac{47}{74}\right)\) | \(e\left(\frac{32}{37}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)