Properties

Modulus $6660$
Structure \(C_{2}\times C_{2}\times C_{12}\times C_{36}\)
Order $1728$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(6660)
 
Copy content pari:g = idealstar(,6660,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 1728
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{12}\times C_{36}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{6660}(3331,\cdot)$, $\chi_{6660}(3701,\cdot)$, $\chi_{6660}(3997,\cdot)$, $\chi_{6660}(3961,\cdot)$

First 32 of 1728 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(41\) \(43\)
\(\chi_{6660}(1,\cdot)\) 6660.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{6660}(7,\cdot)\) 6660.lr 36 yes \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{6660}(11,\cdot)\) 6660.cz 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6660}(13,\cdot)\) 6660.jp 36 no \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(-1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6660}(17,\cdot)\) 6660.kx 36 no \(-1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{8}{9}\right)\) \(1\)
\(\chi_{6660}(19,\cdot)\) 6660.kl 36 no \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{17}{18}\right)\) \(i\)
\(\chi_{6660}(23,\cdot)\) 6660.ga 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6660}(29,\cdot)\) 6660.hk 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{6660}(31,\cdot)\) 6660.hj 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{6660}(41,\cdot)\) 6660.ic 18 no \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6660}(43,\cdot)\) 6660.fw 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6660}(47,\cdot)\) 6660.fl 12 yes \(-1\) \(1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{6660}(49,\cdot)\) 6660.ik 18 no \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6660}(53,\cdot)\) 6660.lf 36 no \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{13}{18}\right)\) \(i\)
\(\chi_{6660}(59,\cdot)\) 6660.lh 36 yes \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{6660}(61,\cdot)\) 6660.lm 36 no \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{6660}(67,\cdot)\) 6660.jw 36 yes \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(-1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(-i\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{6660}(71,\cdot)\) 6660.if 18 no \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{17}{18}\right)\) \(-1\)
\(\chi_{6660}(73,\cdot)\) 6660.bl 4 no \(-1\) \(1\) \(-i\) \(1\) \(-i\) \(i\) \(1\) \(-i\) \(1\) \(-1\) \(1\) \(-i\)
\(\chi_{6660}(77,\cdot)\) 6660.jr 36 no \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(-1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(-i\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{6660}(79,\cdot)\) 6660.ko 36 yes \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{6660}(83,\cdot)\) 6660.mf 36 yes \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(i\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{6660}(89,\cdot)\) 6660.kk 36 no \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{2}{9}\right)\) \(i\)
\(\chi_{6660}(91,\cdot)\) 6660.kn 36 no \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{7}{18}\right)\) \(-i\)
\(\chi_{6660}(97,\cdot)\) 6660.gd 12 no \(1\) \(1\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6660}(101,\cdot)\) 6660.dy 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6660}(103,\cdot)\) 6660.ff 12 yes \(-1\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6660}(107,\cdot)\) 6660.kf 36 no \(-1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{11}{18}\right)\) \(i\)
\(\chi_{6660}(109,\cdot)\) 6660.ll 36 no \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{1}{18}\right)\) \(-i\)
\(\chi_{6660}(113,\cdot)\) 6660.kv 36 no \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{6660}(119,\cdot)\) 6660.eq 12 yes \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{6660}(121,\cdot)\) 6660.r 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
Click here to search among the remaining 1696 characters.