Properties

Label 6304.4703
Modulus $6304$
Conductor $788$
Order $98$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([49,0,40]))
 
Copy content pari:[g,chi] = znchar(Mod(4703,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(98\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{788}(763,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.ci

\(\chi_{6304}(63,\cdot)\) \(\chi_{6304}(287,\cdot)\) \(\chi_{6304}(351,\cdot)\) \(\chi_{6304}(447,\cdot)\) \(\chi_{6304}(479,\cdot)\) \(\chi_{6304}(607,\cdot)\) \(\chi_{6304}(959,\cdot)\) \(\chi_{6304}(1055,\cdot)\) \(\chi_{6304}(1375,\cdot)\) \(\chi_{6304}(1407,\cdot)\) \(\chi_{6304}(1439,\cdot)\) \(\chi_{6304}(1535,\cdot)\) \(\chi_{6304}(1567,\cdot)\) \(\chi_{6304}(1599,\cdot)\) \(\chi_{6304}(2207,\cdot)\) \(\chi_{6304}(2719,\cdot)\) \(\chi_{6304}(2751,\cdot)\) \(\chi_{6304}(3327,\cdot)\) \(\chi_{6304}(3391,\cdot)\) \(\chi_{6304}(3583,\cdot)\) \(\chi_{6304}(3647,\cdot)\) \(\chi_{6304}(3679,\cdot)\) \(\chi_{6304}(3999,\cdot)\) \(\chi_{6304}(4127,\cdot)\) \(\chi_{6304}(4191,\cdot)\) \(\chi_{6304}(4287,\cdot)\) \(\chi_{6304}(4319,\cdot)\) \(\chi_{6304}(4383,\cdot)\) \(\chi_{6304}(4415,\cdot)\) \(\chi_{6304}(4607,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 98 polynomial

Values on generators

\((1183,3941,3745)\) → \((-1,1,e\left(\frac{20}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(4703, a) \) \(-1\)\(1\)\(e\left(\frac{37}{98}\right)\)\(e\left(\frac{16}{49}\right)\)\(e\left(\frac{9}{98}\right)\)\(e\left(\frac{37}{49}\right)\)\(e\left(\frac{33}{98}\right)\)\(e\left(\frac{10}{49}\right)\)\(e\left(\frac{69}{98}\right)\)\(e\left(\frac{44}{49}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{23}{49}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(4703,a) \;\) at \(\;a = \) e.g. 2