sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6304, base_ring=CyclotomicField(392))
M = H._module
chi = DirichletCharacter(H, M([0,245,240]))
pari:[g,chi] = znchar(Mod(1205,6304))
| Modulus: | \(6304\) | |
| Conductor: | \(6304\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(392\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6304}(29,\cdot)\)
\(\chi_{6304}(37,\cdot)\)
\(\chi_{6304}(53,\cdot)\)
\(\chi_{6304}(61,\cdot)\)
\(\chi_{6304}(85,\cdot)\)
\(\chi_{6304}(101,\cdot)\)
\(\chi_{6304}(133,\cdot)\)
\(\chi_{6304}(213,\cdot)\)
\(\chi_{6304}(221,\cdot)\)
\(\chi_{6304}(237,\cdot)\)
\(\chi_{6304}(285,\cdot)\)
\(\chi_{6304}(445,\cdot)\)
\(\chi_{6304}(453,\cdot)\)
\(\chi_{6304}(565,\cdot)\)
\(\chi_{6304}(581,\cdot)\)
\(\chi_{6304}(645,\cdot)\)
\(\chi_{6304}(661,\cdot)\)
\(\chi_{6304}(733,\cdot)\)
\(\chi_{6304}(741,\cdot)\)
\(\chi_{6304}(749,\cdot)\)
\(\chi_{6304}(773,\cdot)\)
\(\chi_{6304}(781,\cdot)\)
\(\chi_{6304}(837,\cdot)\)
\(\chi_{6304}(869,\cdot)\)
\(\chi_{6304}(893,\cdot)\)
\(\chi_{6304}(981,\cdot)\)
\(\chi_{6304}(1013,\cdot)\)
\(\chi_{6304}(1045,\cdot)\)
\(\chi_{6304}(1061,\cdot)\)
\(\chi_{6304}(1085,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,3941,3745)\) → \((1,e\left(\frac{5}{8}\right),e\left(\frac{30}{49}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 6304 }(1205, a) \) |
\(1\) | \(1\) | \(e\left(\frac{271}{392}\right)\) | \(e\left(\frac{45}{392}\right)\) | \(e\left(\frac{125}{196}\right)\) | \(e\left(\frac{75}{196}\right)\) | \(e\left(\frac{345}{392}\right)\) | \(e\left(\frac{267}{392}\right)\) | \(e\left(\frac{79}{98}\right)\) | \(e\left(\frac{83}{98}\right)\) | \(e\left(\frac{37}{56}\right)\) | \(e\left(\frac{129}{392}\right)\) |
sage:chi.jacobi_sum(n)