sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([3,103]))
pari:[g,chi] = znchar(Mod(101,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(101,\cdot)\)
\(\chi_{6223}(180,\cdot)\)
\(\chi_{6223}(299,\cdot)\)
\(\chi_{6223}(395,\cdot)\)
\(\chi_{6223}(514,\cdot)\)
\(\chi_{6223}(605,\cdot)\)
\(\chi_{6223}(829,\cdot)\)
\(\chi_{6223}(1039,\cdot)\)
\(\chi_{6223}(1125,\cdot)\)
\(\chi_{6223}(1132,\cdot)\)
\(\chi_{6223}(1482,\cdot)\)
\(\chi_{6223}(2124,\cdot)\)
\(\chi_{6223}(2215,\cdot)\)
\(\chi_{6223}(2245,\cdot)\)
\(\chi_{6223}(2329,\cdot)\)
\(\chi_{6223}(2364,\cdot)\)
\(\chi_{6223}(2586,\cdot)\)
\(\chi_{6223}(2859,\cdot)\)
\(\chi_{6223}(3141,\cdot)\)
\(\chi_{6223}(3281,\cdot)\)
\(\chi_{6223}(3393,\cdot)\)
\(\chi_{6223}(3512,\cdot)\)
\(\chi_{6223}(3666,\cdot)\)
\(\chi_{6223}(3722,\cdot)\)
\(\chi_{6223}(3797,\cdot)\)
\(\chi_{6223}(3867,\cdot)\)
\(\chi_{6223}(3944,\cdot)\)
\(\chi_{6223}(4093,\cdot)\)
\(\chi_{6223}(4938,\cdot)\)
\(\chi_{6223}(5325,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{1}{42}\right),e\left(\frac{103}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(101, a) \) |
\(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{20}{63}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{43}{63}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{34}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) |
sage:chi.jacobi_sum(n)