Properties

Label 621.212
Modulus $621$
Conductor $621$
Order $198$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(621, base_ring=CyclotomicField(198)) M = H._module chi = DirichletCharacter(H, M([121,9]))
 
Copy content pari:[g,chi] = znchar(Mod(212,621))
 

Basic properties

Modulus: \(621\)
Conductor: \(621\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(198\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 621.v

\(\chi_{621}(5,\cdot)\) \(\chi_{621}(11,\cdot)\) \(\chi_{621}(14,\cdot)\) \(\chi_{621}(20,\cdot)\) \(\chi_{621}(38,\cdot)\) \(\chi_{621}(56,\cdot)\) \(\chi_{621}(65,\cdot)\) \(\chi_{621}(74,\cdot)\) \(\chi_{621}(83,\cdot)\) \(\chi_{621}(86,\cdot)\) \(\chi_{621}(113,\cdot)\) \(\chi_{621}(122,\cdot)\) \(\chi_{621}(149,\cdot)\) \(\chi_{621}(155,\cdot)\) \(\chi_{621}(158,\cdot)\) \(\chi_{621}(176,\cdot)\) \(\chi_{621}(182,\cdot)\) \(\chi_{621}(191,\cdot)\) \(\chi_{621}(194,\cdot)\) \(\chi_{621}(203,\cdot)\) \(\chi_{621}(212,\cdot)\) \(\chi_{621}(218,\cdot)\) \(\chi_{621}(221,\cdot)\) \(\chi_{621}(227,\cdot)\) \(\chi_{621}(245,\cdot)\) \(\chi_{621}(263,\cdot)\) \(\chi_{621}(272,\cdot)\) \(\chi_{621}(281,\cdot)\) \(\chi_{621}(290,\cdot)\) \(\chi_{621}(293,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{99})$
Fixed field: Number field defined by a degree 198 polynomial (not computed)

Values on generators

\((461,28)\) → \((e\left(\frac{11}{18}\right),e\left(\frac{1}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 621 }(212, a) \) \(1\)\(1\)\(e\left(\frac{139}{198}\right)\)\(e\left(\frac{40}{99}\right)\)\(e\left(\frac{10}{99}\right)\)\(e\left(\frac{127}{198}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{53}{66}\right)\)\(e\left(\frac{35}{99}\right)\)\(e\left(\frac{52}{99}\right)\)\(e\left(\frac{34}{99}\right)\)\(e\left(\frac{80}{99}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 621 }(212,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 621 }(212,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 621 }(212,·),\chi_{ 621 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 621 }(212,·)) \;\) at \(\; a,b = \) e.g. 1,2