sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6075, base_ring=CyclotomicField(810))
M = H._module
chi = DirichletCharacter(H, M([170,486]))
pari:[g,chi] = znchar(Mod(2221,6075))
| Modulus: | \(6075\) | |
| Conductor: | \(6075\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(405\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6075}(16,\cdot)\)
\(\chi_{6075}(31,\cdot)\)
\(\chi_{6075}(61,\cdot)\)
\(\chi_{6075}(106,\cdot)\)
\(\chi_{6075}(121,\cdot)\)
\(\chi_{6075}(166,\cdot)\)
\(\chi_{6075}(196,\cdot)\)
\(\chi_{6075}(211,\cdot)\)
\(\chi_{6075}(241,\cdot)\)
\(\chi_{6075}(256,\cdot)\)
\(\chi_{6075}(286,\cdot)\)
\(\chi_{6075}(331,\cdot)\)
\(\chi_{6075}(346,\cdot)\)
\(\chi_{6075}(391,\cdot)\)
\(\chi_{6075}(421,\cdot)\)
\(\chi_{6075}(436,\cdot)\)
\(\chi_{6075}(466,\cdot)\)
\(\chi_{6075}(481,\cdot)\)
\(\chi_{6075}(511,\cdot)\)
\(\chi_{6075}(556,\cdot)\)
\(\chi_{6075}(571,\cdot)\)
\(\chi_{6075}(616,\cdot)\)
\(\chi_{6075}(646,\cdot)\)
\(\chi_{6075}(661,\cdot)\)
\(\chi_{6075}(691,\cdot)\)
\(\chi_{6075}(706,\cdot)\)
\(\chi_{6075}(736,\cdot)\)
\(\chi_{6075}(781,\cdot)\)
\(\chi_{6075}(796,\cdot)\)
\(\chi_{6075}(841,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,1702)\) → \((e\left(\frac{17}{81}\right),e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 6075 }(2221, a) \) |
\(1\) | \(1\) | \(e\left(\frac{328}{405}\right)\) | \(e\left(\frac{251}{405}\right)\) | \(e\left(\frac{56}{81}\right)\) | \(e\left(\frac{58}{135}\right)\) | \(e\left(\frac{403}{405}\right)\) | \(e\left(\frac{32}{405}\right)\) | \(e\left(\frac{203}{405}\right)\) | \(e\left(\frac{97}{405}\right)\) | \(e\left(\frac{98}{135}\right)\) | \(e\left(\frac{73}{135}\right)\) |
sage:chi.jacobi_sum(n)