sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6075, base_ring=CyclotomicField(810))
M = H._module
chi = DirichletCharacter(H, M([125,243]))
pari:[g,chi] = znchar(Mod(1964,6075))
| Modulus: | \(6075\) | |
| Conductor: | \(6075\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(810\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6075}(14,\cdot)\)
\(\chi_{6075}(29,\cdot)\)
\(\chi_{6075}(59,\cdot)\)
\(\chi_{6075}(104,\cdot)\)
\(\chi_{6075}(119,\cdot)\)
\(\chi_{6075}(164,\cdot)\)
\(\chi_{6075}(194,\cdot)\)
\(\chi_{6075}(209,\cdot)\)
\(\chi_{6075}(239,\cdot)\)
\(\chi_{6075}(254,\cdot)\)
\(\chi_{6075}(284,\cdot)\)
\(\chi_{6075}(329,\cdot)\)
\(\chi_{6075}(344,\cdot)\)
\(\chi_{6075}(389,\cdot)\)
\(\chi_{6075}(419,\cdot)\)
\(\chi_{6075}(434,\cdot)\)
\(\chi_{6075}(464,\cdot)\)
\(\chi_{6075}(479,\cdot)\)
\(\chi_{6075}(509,\cdot)\)
\(\chi_{6075}(554,\cdot)\)
\(\chi_{6075}(569,\cdot)\)
\(\chi_{6075}(614,\cdot)\)
\(\chi_{6075}(644,\cdot)\)
\(\chi_{6075}(659,\cdot)\)
\(\chi_{6075}(689,\cdot)\)
\(\chi_{6075}(704,\cdot)\)
\(\chi_{6075}(734,\cdot)\)
\(\chi_{6075}(779,\cdot)\)
\(\chi_{6075}(794,\cdot)\)
\(\chi_{6075}(839,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4376,1702)\) → \((e\left(\frac{25}{162}\right),e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 6075 }(1964, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{184}{405}\right)\) | \(e\left(\frac{368}{405}\right)\) | \(e\left(\frac{49}{162}\right)\) | \(e\left(\frac{49}{135}\right)\) | \(e\left(\frac{383}{810}\right)\) | \(e\left(\frac{757}{810}\right)\) | \(e\left(\frac{613}{810}\right)\) | \(e\left(\frac{331}{405}\right)\) | \(e\left(\frac{134}{135}\right)\) | \(e\left(\frac{64}{135}\right)\) |
sage:chi.jacobi_sum(n)