sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(59, base_ring=CyclotomicField(58))
M = H._module
chi = DirichletCharacter(H, M([40]))
pari:[g,chi] = znchar(Mod(17,59))
| Modulus: | \(59\) | |
| Conductor: | \(59\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(29\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{59}(3,\cdot)\)
\(\chi_{59}(4,\cdot)\)
\(\chi_{59}(5,\cdot)\)
\(\chi_{59}(7,\cdot)\)
\(\chi_{59}(9,\cdot)\)
\(\chi_{59}(12,\cdot)\)
\(\chi_{59}(15,\cdot)\)
\(\chi_{59}(16,\cdot)\)
\(\chi_{59}(17,\cdot)\)
\(\chi_{59}(19,\cdot)\)
\(\chi_{59}(20,\cdot)\)
\(\chi_{59}(21,\cdot)\)
\(\chi_{59}(22,\cdot)\)
\(\chi_{59}(25,\cdot)\)
\(\chi_{59}(26,\cdot)\)
\(\chi_{59}(27,\cdot)\)
\(\chi_{59}(28,\cdot)\)
\(\chi_{59}(29,\cdot)\)
\(\chi_{59}(35,\cdot)\)
\(\chi_{59}(36,\cdot)\)
\(\chi_{59}(41,\cdot)\)
\(\chi_{59}(45,\cdot)\)
\(\chi_{59}(46,\cdot)\)
\(\chi_{59}(48,\cdot)\)
\(\chi_{59}(49,\cdot)\)
\(\chi_{59}(51,\cdot)\)
\(\chi_{59}(53,\cdot)\)
\(\chi_{59}(57,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{20}{29}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 59 }(17, a) \) |
\(1\) | \(1\) | \(e\left(\frac{20}{29}\right)\) | \(e\left(\frac{14}{29}\right)\) | \(e\left(\frac{11}{29}\right)\) | \(e\left(\frac{4}{29}\right)\) | \(e\left(\frac{5}{29}\right)\) | \(e\left(\frac{12}{29}\right)\) | \(e\left(\frac{2}{29}\right)\) | \(e\left(\frac{28}{29}\right)\) | \(e\left(\frac{24}{29}\right)\) | \(e\left(\frac{7}{29}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)