Properties

Label 561.32
Modulus $561$
Conductor $561$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(561, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,4,3]))
 
Copy content pari:[g,chi] = znchar(Mod(32,561))
 

Basic properties

Modulus: \(561\)
Conductor: \(561\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 561.q

\(\chi_{561}(32,\cdot)\) \(\chi_{561}(230,\cdot)\) \(\chi_{561}(263,\cdot)\) \(\chi_{561}(461,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.486629249422833.1

Values on generators

\((188,409,496)\) → \((-1,-1,e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(19\)
\( \chi_{ 561 }(32, a) \) \(1\)\(1\)\(i\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(e\left(\frac{5}{8}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(1\)\(-i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 561 }(32,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 561 }(32,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 561 }(32,·),\chi_{ 561 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 561 }(32,·)) \;\) at \(\; a,b = \) e.g. 1,2