Character group
| ||
Order | = | 1344 |
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{84}\) |
| ||
Generators | = | $\chi_{5160}(3871,\cdot)$, $\chi_{5160}(2581,\cdot)$, $\chi_{5160}(1721,\cdot)$, $\chi_{5160}(3097,\cdot)$, $\chi_{5160}(4561,\cdot)$ |
First 32 of 1344 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5160}(1,\cdot)\) | 5160.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{5160}(7,\cdot)\) | 5160.di | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) |
\(\chi_{5160}(11,\cdot)\) | 5160.eh | 14 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) | \(e\left(\frac{11}{14}\right)\) |
\(\chi_{5160}(13,\cdot)\) | 5160.hj | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{5160}(17,\cdot)\) | 5160.hf | 84 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{5160}(19,\cdot)\) | 5160.gj | 42 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{5160}(23,\cdot)\) | 5160.ha | 84 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{29}{84}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{14}\right)\) |
\(\chi_{5160}(29,\cdot)\) | 5160.fv | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{14}\right)\) |
\(\chi_{5160}(31,\cdot)\) | 5160.gt | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{5160}(37,\cdot)\) | 5160.dj | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) |
\(\chi_{5160}(41,\cdot)\) | 5160.et | 14 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{5}{14}\right)\) |
\(\chi_{5160}(47,\cdot)\) | 5160.fa | 28 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(i\) | \(e\left(\frac{3}{14}\right)\) |
\(\chi_{5160}(49,\cdot)\) | 5160.da | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
\(\chi_{5160}(53,\cdot)\) | 5160.gz | 84 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{31}{84}\right)\) | \(e\left(\frac{25}{84}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{5160}(59,\cdot)\) | 5160.eq | 14 | yes | \(1\) | \(1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(1\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{5160}(61,\cdot)\) | 5160.gp | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{5160}(67,\cdot)\) | 5160.gw | 84 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{61}{84}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{41}{84}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{5160}(71,\cdot)\) | 5160.fu | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{3}{14}\right)\) |
\(\chi_{5160}(73,\cdot)\) | 5160.hb | 84 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{59}{84}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{37}{84}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{5160}(77,\cdot)\) | 5160.gx | 84 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{65}{84}\right)\) | \(e\left(\frac{47}{84}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{84}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{14}\right)\) |
\(\chi_{5160}(79,\cdot)\) | 5160.cd | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
\(\chi_{5160}(83,\cdot)\) | 5160.hc | 84 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{43}{84}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{53}{84}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{5160}(89,\cdot)\) | 5160.fz | 42 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{5160}(91,\cdot)\) | 5160.fs | 42 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{5160}(97,\cdot)\) | 5160.ff | 28 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(i\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{5160}(101,\cdot)\) | 5160.fq | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{3}{14}\right)\) |
\(\chi_{5160}(103,\cdot)\) | 5160.hg | 84 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{17}{84}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{19}{84}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{3}{7}\right)\) |
\(\chi_{5160}(107,\cdot)\) | 5160.fo | 28 | yes | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(-i\) | \(e\left(\frac{9}{14}\right)\) |
\(\chi_{5160}(109,\cdot)\) | 5160.gq | 42 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{5160}(113,\cdot)\) | 5160.fj | 28 | no | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(i\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{5160}(119,\cdot)\) | 5160.gh | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{14}\right)\) |
\(\chi_{5160}(121,\cdot)\) | 5160.dc | 7 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{4}{7}\right)\) |