sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(516, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,11]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(383,516))
         
     
    
  
   | Modulus: |  \(516\) |   |  
   | Conductor: |  \(516\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(14\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{516}(131,\cdot)\)
  \(\chi_{516}(323,\cdot)\)
  \(\chi_{516}(371,\cdot)\)
  \(\chi_{516}(383,\cdot)\)
  \(\chi_{516}(395,\cdot)\)
  \(\chi_{516}(419,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((259,173,433)\) → \((-1,-1,e\left(\frac{11}{14}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |       
    
    
      | \( \chi_{ 516 }(383, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)