sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(511, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([60,29]))
pari:[g,chi] = znchar(Mod(180,511))
| Modulus: | \(511\) | |
| Conductor: | \(511\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{511}(45,\cdot)\)
\(\chi_{511}(101,\cdot)\)
\(\chi_{511}(117,\cdot)\)
\(\chi_{511}(157,\cdot)\)
\(\chi_{511}(159,\cdot)\)
\(\chi_{511}(166,\cdot)\)
\(\chi_{511}(180,\cdot)\)
\(\chi_{511}(234,\cdot)\)
\(\chi_{511}(250,\cdot)\)
\(\chi_{511}(278,\cdot)\)
\(\chi_{511}(297,\cdot)\)
\(\chi_{511}(306,\cdot)\)
\(\chi_{511}(318,\cdot)\)
\(\chi_{511}(325,\cdot)\)
\(\chi_{511}(332,\cdot)\)
\(\chi_{511}(334,\cdot)\)
\(\chi_{511}(339,\cdot)\)
\(\chi_{511}(360,\cdot)\)
\(\chi_{511}(404,\cdot)\)
\(\chi_{511}(418,\cdot)\)
\(\chi_{511}(423,\cdot)\)
\(\chi_{511}(425,\cdot)\)
\(\chi_{511}(467,\cdot)\)
\(\chi_{511}(500,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((220,78)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{29}{72}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 511 }(180, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(i\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{1}{36}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)