sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(496, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([0,15,8]))
pari:[g,chi] = znchar(Mod(349,496))
| Modulus: | \(496\) | |
| Conductor: | \(496\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{496}(101,\cdot)\)
\(\chi_{496}(109,\cdot)\)
\(\chi_{496}(157,\cdot)\)
\(\chi_{496}(221,\cdot)\)
\(\chi_{496}(349,\cdot)\)
\(\chi_{496}(357,\cdot)\)
\(\chi_{496}(405,\cdot)\)
\(\chi_{496}(469,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((63,373,65)\) → \((1,-i,e\left(\frac{2}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 496 }(349, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{20}\right)\) | \(-i\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{20}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)