sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4896, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,21,8,9]))
pari:[g,chi] = znchar(Mod(4333,4896))
Modulus: | \(4896\) | |
Conductor: | \(4896\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(24\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4896}(229,\cdot)\)
\(\chi_{4896}(733,\cdot)\)
\(\chi_{4896}(1069,\cdot)\)
\(\chi_{4896}(1861,\cdot)\)
\(\chi_{4896}(2365,\cdot)\)
\(\chi_{4896}(2389,\cdot)\)
\(\chi_{4896}(4021,\cdot)\)
\(\chi_{4896}(4333,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,613,3809,4321)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{3}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 4896 }(4333, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) |
sage:chi.jacobi_sum(n)