Properties

Modulus $4864$
Structure \(C_{2}\times C_{2}\times C_{576}\)
Order $2304$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(4864)
 
Copy content pari:g = idealstar(,4864,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 2304
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{576}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{4864}(3839,\cdot)$, $\chi_{4864}(2053,\cdot)$, $\chi_{4864}(4353,\cdot)$

First 32 of 2304 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{4864}(1,\cdot)\) 4864.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{4864}(3,\cdot)\) 4864.dd 576 yes \(1\) \(1\) \(e\left(\frac{17}{576}\right)\) \(e\left(\frac{59}{576}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{17}{288}\right)\) \(e\left(\frac{125}{192}\right)\) \(e\left(\frac{181}{576}\right)\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{191}{576}\right)\) \(e\left(\frac{173}{288}\right)\)
\(\chi_{4864}(5,\cdot)\) 4864.dc 576 yes \(1\) \(1\) \(e\left(\frac{59}{576}\right)\) \(e\left(\frac{137}{576}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{191}{192}\right)\) \(e\left(\frac{103}{576}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{47}{144}\right)\) \(e\left(\frac{341}{576}\right)\) \(e\left(\frac{287}{288}\right)\)
\(\chi_{4864}(7,\cdot)\) 4864.cm 96 no \(-1\) \(1\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{17}{48}\right)\)
\(\chi_{4864}(9,\cdot)\) 4864.da 288 no \(1\) \(1\) \(e\left(\frac{17}{288}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{181}{288}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{191}{288}\right)\) \(e\left(\frac{29}{144}\right)\)
\(\chi_{4864}(11,\cdot)\) 4864.cv 192 yes \(-1\) \(1\) \(e\left(\frac{125}{192}\right)\) \(e\left(\frac{191}{192}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{145}{192}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{83}{192}\right)\) \(e\left(\frac{41}{96}\right)\)
\(\chi_{4864}(13,\cdot)\) 4864.de 576 yes \(-1\) \(1\) \(e\left(\frac{181}{576}\right)\) \(e\left(\frac{103}{576}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{181}{288}\right)\) \(e\left(\frac{145}{192}\right)\) \(e\left(\frac{521}{576}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{187}{576}\right)\) \(e\left(\frac{241}{288}\right)\)
\(\chi_{4864}(15,\cdot)\) 4864.ct 144 no \(1\) \(1\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{43}{72}\right)\)
\(\chi_{4864}(17,\cdot)\) 4864.cs 144 no \(1\) \(1\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{47}{144}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{35}{144}\right)\) \(e\left(\frac{17}{72}\right)\)
\(\chi_{4864}(21,\cdot)\) 4864.de 576 yes \(-1\) \(1\) \(e\left(\frac{191}{576}\right)\) \(e\left(\frac{341}{576}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{191}{288}\right)\) \(e\left(\frac{83}{192}\right)\) \(e\left(\frac{187}{576}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{35}{144}\right)\) \(e\left(\frac{401}{576}\right)\) \(e\left(\frac{275}{288}\right)\)
\(\chi_{4864}(23,\cdot)\) 4864.db 288 no \(-1\) \(1\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{287}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{29}{144}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{241}{288}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{275}{288}\right)\) \(e\left(\frac{113}{144}\right)\)
\(\chi_{4864}(25,\cdot)\) 4864.da 288 no \(1\) \(1\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{137}{288}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{59}{144}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{103}{288}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{53}{288}\right)\) \(e\left(\frac{143}{144}\right)\)
\(\chi_{4864}(27,\cdot)\) 4864.cw 192 yes \(1\) \(1\) \(e\left(\frac{17}{192}\right)\) \(e\left(\frac{59}{192}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{181}{192}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{191}{192}\right)\) \(e\left(\frac{77}{96}\right)\)
\(\chi_{4864}(29,\cdot)\) 4864.de 576 yes \(-1\) \(1\) \(e\left(\frac{313}{576}\right)\) \(e\left(\frac{19}{576}\right)\) \(e\left(\frac{85}{96}\right)\) \(e\left(\frac{25}{288}\right)\) \(e\left(\frac{133}{192}\right)\) \(e\left(\frac{29}{576}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{37}{144}\right)\) \(e\left(\frac{247}{576}\right)\) \(e\left(\frac{229}{288}\right)\)
\(\chi_{4864}(31,\cdot)\) 4864.br 24 no \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{4864}(33,\cdot)\) 4864.cl 72 no \(-1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{4864}(35,\cdot)\) 4864.df 576 yes \(-1\) \(1\) \(e\left(\frac{233}{576}\right)\) \(e\left(\frac{419}{576}\right)\) \(e\left(\frac{53}{96}\right)\) \(e\left(\frac{233}{288}\right)\) \(e\left(\frac{149}{192}\right)\) \(e\left(\frac{109}{576}\right)\) \(e\left(\frac{19}{144}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{551}{576}\right)\) \(e\left(\frac{101}{288}\right)\)
\(\chi_{4864}(37,\cdot)\) 4864.ch 64 yes \(-1\) \(1\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{15}{32}\right)\)
\(\chi_{4864}(39,\cdot)\) 4864.bu 32 no \(-1\) \(1\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{4864}(41,\cdot)\) 4864.cy 288 no \(-1\) \(1\) \(e\left(\frac{85}{288}\right)\) \(e\left(\frac{151}{288}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{85}{144}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{41}{288}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{91}{288}\right)\) \(e\left(\frac{1}{144}\right)\)
\(\chi_{4864}(43,\cdot)\) 4864.df 576 yes \(-1\) \(1\) \(e\left(\frac{239}{576}\right)\) \(e\left(\frac{101}{576}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{239}{288}\right)\) \(e\left(\frac{35}{192}\right)\) \(e\left(\frac{139}{576}\right)\) \(e\left(\frac{85}{144}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{449}{576}\right)\) \(e\left(\frac{179}{288}\right)\)
\(\chi_{4864}(45,\cdot)\) 4864.cx 192 yes \(1\) \(1\) \(e\left(\frac{31}{192}\right)\) \(e\left(\frac{85}{192}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{155}{192}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{49}{192}\right)\) \(e\left(\frac{19}{96}\right)\)
\(\chi_{4864}(47,\cdot)\) 4864.cq 144 no \(-1\) \(1\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{115}{144}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{55}{144}\right)\) \(e\left(\frac{1}{72}\right)\)
\(\chi_{4864}(49,\cdot)\) 4864.cb 48 no \(1\) \(1\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{4864}(51,\cdot)\) 4864.dd 576 yes \(1\) \(1\) \(e\left(\frac{325}{576}\right)\) \(e\left(\frac{247}{576}\right)\) \(e\left(\frac{1}{96}\right)\) \(e\left(\frac{37}{288}\right)\) \(e\left(\frac{97}{192}\right)\) \(e\left(\frac{377}{576}\right)\) \(e\left(\frac{143}{144}\right)\) \(e\left(\frac{49}{144}\right)\) \(e\left(\frac{331}{576}\right)\) \(e\left(\frac{241}{288}\right)\)
\(\chi_{4864}(53,\cdot)\) 4864.de 576 yes \(-1\) \(1\) \(e\left(\frac{391}{576}\right)\) \(e\left(\frac{493}{576}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{103}{288}\right)\) \(e\left(\frac{187}{192}\right)\) \(e\left(\frac{419}{576}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{43}{144}\right)\) \(e\left(\frac{73}{576}\right)\) \(e\left(\frac{91}{288}\right)\)
\(\chi_{4864}(55,\cdot)\) 4864.db 288 no \(-1\) \(1\) \(e\left(\frac{217}{288}\right)\) \(e\left(\frac{67}{288}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{73}{144}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{269}{288}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{288}\right)\) \(e\left(\frac{61}{144}\right)\)
\(\chi_{4864}(59,\cdot)\) 4864.dd 576 yes \(1\) \(1\) \(e\left(\frac{299}{576}\right)\) \(e\left(\frac{89}{576}\right)\) \(e\left(\frac{47}{96}\right)\) \(e\left(\frac{11}{288}\right)\) \(e\left(\frac{143}{192}\right)\) \(e\left(\frac{439}{576}\right)\) \(e\left(\frac{97}{144}\right)\) \(e\left(\frac{143}{144}\right)\) \(e\left(\frac{5}{576}\right)\) \(e\left(\frac{95}{288}\right)\)
\(\chi_{4864}(61,\cdot)\) 4864.dc 576 yes \(1\) \(1\) \(e\left(\frac{481}{576}\right)\) \(e\left(\frac{43}{576}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{193}{288}\right)\) \(e\left(\frac{109}{192}\right)\) \(e\left(\frac{293}{576}\right)\) \(e\left(\frac{131}{144}\right)\) \(e\left(\frac{61}{144}\right)\) \(e\left(\frac{271}{576}\right)\) \(e\left(\frac{109}{288}\right)\)
\(\chi_{4864}(63,\cdot)\) 4864.bx 36 no \(-1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{4864}(65,\cdot)\) 4864.ba 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{4864}(67,\cdot)\) 4864.dd 576 yes \(1\) \(1\) \(e\left(\frac{385}{576}\right)\) \(e\left(\frac{523}{576}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{97}{288}\right)\) \(e\left(\frac{109}{192}\right)\) \(e\left(\frac{101}{576}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{109}{144}\right)\) \(e\left(\frac{463}{576}\right)\) \(e\left(\frac{157}{288}\right)\)
Click here to search among the remaining 2272 characters.