sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,200,126]))
pari:[g,chi] = znchar(Mod(1285,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(25,\cdot)\)
\(\chi_{4851}(58,\cdot)\)
\(\chi_{4851}(247,\cdot)\)
\(\chi_{4851}(466,\cdot)\)
\(\chi_{4851}(499,\cdot)\)
\(\chi_{4851}(592,\cdot)\)
\(\chi_{4851}(625,\cdot)\)
\(\chi_{4851}(718,\cdot)\)
\(\chi_{4851}(751,\cdot)\)
\(\chi_{4851}(907,\cdot)\)
\(\chi_{4851}(940,\cdot)\)
\(\chi_{4851}(1159,\cdot)\)
\(\chi_{4851}(1192,\cdot)\)
\(\chi_{4851}(1285,\cdot)\)
\(\chi_{4851}(1318,\cdot)\)
\(\chi_{4851}(1411,\cdot)\)
\(\chi_{4851}(1444,\cdot)\)
\(\chi_{4851}(1600,\cdot)\)
\(\chi_{4851}(1633,\cdot)\)
\(\chi_{4851}(1852,\cdot)\)
\(\chi_{4851}(1885,\cdot)\)
\(\chi_{4851}(2011,\cdot)\)
\(\chi_{4851}(2104,\cdot)\)
\(\chi_{4851}(2293,\cdot)\)
\(\chi_{4851}(2326,\cdot)\)
\(\chi_{4851}(2545,\cdot)\)
\(\chi_{4851}(2671,\cdot)\)
\(\chi_{4851}(2704,\cdot)\)
\(\chi_{4851}(2797,\cdot)\)
\(\chi_{4851}(2830,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{20}{21}\right),e\left(\frac{3}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(1285, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{2}{35}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{38}{105}\right)\) | \(e\left(\frac{4}{35}\right)\) | \(e\left(\frac{22}{105}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{43}{105}\right)\) |
sage:chi.jacobi_sum(n)