Properties

Label 4851.1285
Modulus $4851$
Conductor $4851$
Order $105$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([140,200,126]))
 
Copy content pari:[g,chi] = znchar(Mod(1285,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(105\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.fb

\(\chi_{4851}(25,\cdot)\) \(\chi_{4851}(58,\cdot)\) \(\chi_{4851}(247,\cdot)\) \(\chi_{4851}(466,\cdot)\) \(\chi_{4851}(499,\cdot)\) \(\chi_{4851}(592,\cdot)\) \(\chi_{4851}(625,\cdot)\) \(\chi_{4851}(718,\cdot)\) \(\chi_{4851}(751,\cdot)\) \(\chi_{4851}(907,\cdot)\) \(\chi_{4851}(940,\cdot)\) \(\chi_{4851}(1159,\cdot)\) \(\chi_{4851}(1192,\cdot)\) \(\chi_{4851}(1285,\cdot)\) \(\chi_{4851}(1318,\cdot)\) \(\chi_{4851}(1411,\cdot)\) \(\chi_{4851}(1444,\cdot)\) \(\chi_{4851}(1600,\cdot)\) \(\chi_{4851}(1633,\cdot)\) \(\chi_{4851}(1852,\cdot)\) \(\chi_{4851}(1885,\cdot)\) \(\chi_{4851}(2011,\cdot)\) \(\chi_{4851}(2104,\cdot)\) \(\chi_{4851}(2293,\cdot)\) \(\chi_{4851}(2326,\cdot)\) \(\chi_{4851}(2545,\cdot)\) \(\chi_{4851}(2671,\cdot)\) \(\chi_{4851}(2704,\cdot)\) \(\chi_{4851}(2797,\cdot)\) \(\chi_{4851}(2830,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 105 polynomial (not computed)

Values on generators

\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{20}{21}\right),e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(1285, a) \) \(1\)\(1\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{2}{35}\right)\)\(e\left(\frac{37}{105}\right)\)\(e\left(\frac{3}{35}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{38}{105}\right)\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{22}{105}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{43}{105}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(1285,a) \;\) at \(\;a = \) e.g. 2