sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([9,20]))
pari:[g,chi] = znchar(Mod(54,475))
Modulus: | \(475\) | |
Conductor: | \(475\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(90\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{475}(4,\cdot)\)
\(\chi_{475}(9,\cdot)\)
\(\chi_{475}(44,\cdot)\)
\(\chi_{475}(54,\cdot)\)
\(\chi_{475}(104,\cdot)\)
\(\chi_{475}(119,\cdot)\)
\(\chi_{475}(139,\cdot)\)
\(\chi_{475}(169,\cdot)\)
\(\chi_{475}(194,\cdot)\)
\(\chi_{475}(214,\cdot)\)
\(\chi_{475}(234,\cdot)\)
\(\chi_{475}(244,\cdot)\)
\(\chi_{475}(264,\cdot)\)
\(\chi_{475}(289,\cdot)\)
\(\chi_{475}(294,\cdot)\)
\(\chi_{475}(309,\cdot)\)
\(\chi_{475}(329,\cdot)\)
\(\chi_{475}(339,\cdot)\)
\(\chi_{475}(359,\cdot)\)
\(\chi_{475}(384,\cdot)\)
\(\chi_{475}(389,\cdot)\)
\(\chi_{475}(404,\cdot)\)
\(\chi_{475}(434,\cdot)\)
\(\chi_{475}(454,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((77,401)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{2}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 475 }(54, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{1}{90}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)