sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4693, base_ring=CyclotomicField(684))
M = H._module
chi = DirichletCharacter(H, M([285,2]))
pari:[g,chi] = znchar(Mod(1085,4693))
Modulus: | \(4693\) | |
Conductor: | \(4693\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(684\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4693}(15,\cdot)\)
\(\chi_{4693}(33,\cdot)\)
\(\chi_{4693}(59,\cdot)\)
\(\chi_{4693}(67,\cdot)\)
\(\chi_{4693}(71,\cdot)\)
\(\chi_{4693}(89,\cdot)\)
\(\chi_{4693}(97,\cdot)\)
\(\chi_{4693}(98,\cdot)\)
\(\chi_{4693}(136,\cdot)\)
\(\chi_{4693}(167,\cdot)\)
\(\chi_{4693}(184,\cdot)\)
\(\chi_{4693}(219,\cdot)\)
\(\chi_{4693}(280,\cdot)\)
\(\chi_{4693}(306,\cdot)\)
\(\chi_{4693}(314,\cdot)\)
\(\chi_{4693}(318,\cdot)\)
\(\chi_{4693}(336,\cdot)\)
\(\chi_{4693}(344,\cdot)\)
\(\chi_{4693}(345,\cdot)\)
\(\chi_{4693}(383,\cdot)\)
\(\chi_{4693}(414,\cdot)\)
\(\chi_{4693}(431,\cdot)\)
\(\chi_{4693}(466,\cdot)\)
\(\chi_{4693}(509,\cdot)\)
\(\chi_{4693}(527,\cdot)\)
\(\chi_{4693}(553,\cdot)\)
\(\chi_{4693}(561,\cdot)\)
\(\chi_{4693}(565,\cdot)\)
\(\chi_{4693}(583,\cdot)\)
\(\chi_{4693}(591,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1445,3251)\) → \((e\left(\frac{5}{12}\right),e\left(\frac{1}{342}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
\( \chi_{ 4693 }(1085, a) \) |
\(1\) | \(1\) | \(e\left(\frac{287}{684}\right)\) | \(e\left(\frac{25}{342}\right)\) | \(e\left(\frac{287}{342}\right)\) | \(e\left(\frac{293}{684}\right)\) | \(e\left(\frac{337}{684}\right)\) | \(e\left(\frac{5}{228}\right)\) | \(e\left(\frac{59}{228}\right)\) | \(e\left(\frac{25}{171}\right)\) | \(e\left(\frac{145}{171}\right)\) | \(e\left(\frac{49}{228}\right)\) |
sage:chi.jacobi_sum(n)