sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(459, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([40,45]))
pari:[g,chi] = znchar(Mod(25,459))
Modulus: | \(459\) | |
Conductor: | \(459\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{459}(25,\cdot)\)
\(\chi_{459}(43,\cdot)\)
\(\chi_{459}(49,\cdot)\)
\(\chi_{459}(70,\cdot)\)
\(\chi_{459}(76,\cdot)\)
\(\chi_{459}(94,\cdot)\)
\(\chi_{459}(121,\cdot)\)
\(\chi_{459}(151,\cdot)\)
\(\chi_{459}(178,\cdot)\)
\(\chi_{459}(196,\cdot)\)
\(\chi_{459}(202,\cdot)\)
\(\chi_{459}(223,\cdot)\)
\(\chi_{459}(229,\cdot)\)
\(\chi_{459}(247,\cdot)\)
\(\chi_{459}(274,\cdot)\)
\(\chi_{459}(304,\cdot)\)
\(\chi_{459}(331,\cdot)\)
\(\chi_{459}(349,\cdot)\)
\(\chi_{459}(355,\cdot)\)
\(\chi_{459}(376,\cdot)\)
\(\chi_{459}(382,\cdot)\)
\(\chi_{459}(400,\cdot)\)
\(\chi_{459}(427,\cdot)\)
\(\chi_{459}(457,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((137,190)\) → \((e\left(\frac{5}{9}\right),e\left(\frac{5}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 459 }(25, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{2}{9}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)