sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4563, base_ring=CyclotomicField(234))
M = H._module
chi = DirichletCharacter(H, M([104,24]))
pari:[g,chi] = znchar(Mod(1147,4563))
Modulus: | \(4563\) | |
Conductor: | \(4563\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(117\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4563}(61,\cdot)\)
\(\chi_{4563}(94,\cdot)\)
\(\chi_{4563}(178,\cdot)\)
\(\chi_{4563}(211,\cdot)\)
\(\chi_{4563}(295,\cdot)\)
\(\chi_{4563}(328,\cdot)\)
\(\chi_{4563}(412,\cdot)\)
\(\chi_{4563}(445,\cdot)\)
\(\chi_{4563}(562,\cdot)\)
\(\chi_{4563}(646,\cdot)\)
\(\chi_{4563}(679,\cdot)\)
\(\chi_{4563}(763,\cdot)\)
\(\chi_{4563}(796,\cdot)\)
\(\chi_{4563}(880,\cdot)\)
\(\chi_{4563}(913,\cdot)\)
\(\chi_{4563}(997,\cdot)\)
\(\chi_{4563}(1030,\cdot)\)
\(\chi_{4563}(1114,\cdot)\)
\(\chi_{4563}(1147,\cdot)\)
\(\chi_{4563}(1231,\cdot)\)
\(\chi_{4563}(1264,\cdot)\)
\(\chi_{4563}(1348,\cdot)\)
\(\chi_{4563}(1381,\cdot)\)
\(\chi_{4563}(1465,\cdot)\)
\(\chi_{4563}(1582,\cdot)\)
\(\chi_{4563}(1615,\cdot)\)
\(\chi_{4563}(1699,\cdot)\)
\(\chi_{4563}(1732,\cdot)\)
\(\chi_{4563}(1816,\cdot)\)
\(\chi_{4563}(1849,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3889)\) → \((e\left(\frac{4}{9}\right),e\left(\frac{4}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 4563 }(1147, a) \) |
\(1\) | \(1\) | \(e\left(\frac{64}{117}\right)\) | \(e\left(\frac{11}{117}\right)\) | \(e\left(\frac{17}{117}\right)\) | \(e\left(\frac{10}{117}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{40}{117}\right)\) | \(e\left(\frac{74}{117}\right)\) | \(e\left(\frac{22}{117}\right)\) | \(e\left(\frac{25}{39}\right)\) |
sage:chi.jacobi_sum(n)