Properties

Label 449.122
Modulus $449$
Conductor $449$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(449, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([1]))
 
Copy content pari:[g,chi] = znchar(Mod(122,449))
 

Basic properties

Modulus: \(449\)
Conductor: \(449\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 449.e

\(\chi_{449}(92,\cdot)\) \(\chi_{449}(122,\cdot)\) \(\chi_{449}(327,\cdot)\) \(\chi_{449}(357,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.3678954248903875649.1

Values on generators

\(3\) → \(e\left(\frac{1}{8}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 449 }(122, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(-1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(-1\)\(i\)\(i\)\(-i\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 449 }(122,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 449 }(122,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 449 }(122,·),\chi_{ 449 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 449 }(122,·)) \;\) at \(\; a,b = \) e.g. 1,2