![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(445, base_ring=CyclotomicField(88))
M = H._module
chi = DirichletCharacter(H, M([22,65]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(445, base_ring=CyclotomicField(88))
M = H._module
chi = DirichletCharacter(H, M([22,65]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(137,445))
        pari:[g,chi] = znchar(Mod(137,445))
         
     
    
  
   | Modulus: | \(445\) |  | 
   | Conductor: | \(445\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(88\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{445}(7,\cdot)\)
  \(\chi_{445}(13,\cdot)\)
  \(\chi_{445}(38,\cdot)\)
  \(\chi_{445}(58,\cdot)\)
  \(\chi_{445}(63,\cdot)\)
  \(\chi_{445}(82,\cdot)\)
  \(\chi_{445}(92,\cdot)\)
  \(\chi_{445}(108,\cdot)\)
  \(\chi_{445}(112,\cdot)\)
  \(\chi_{445}(117,\cdot)\)
  \(\chi_{445}(118,\cdot)\)
  \(\chi_{445}(122,\cdot)\)
  \(\chi_{445}(132,\cdot)\)
  \(\chi_{445}(137,\cdot)\)
  \(\chi_{445}(143,\cdot)\)
  \(\chi_{445}(148,\cdot)\)
  \(\chi_{445}(163,\cdot)\)
  \(\chi_{445}(172,\cdot)\)
  \(\chi_{445}(192,\cdot)\)
  \(\chi_{445}(193,\cdot)\)
  \(\chi_{445}(202,\cdot)\)
  \(\chi_{445}(208,\cdot)\)
  \(\chi_{445}(213,\cdot)\)
  \(\chi_{445}(238,\cdot)\)
  \(\chi_{445}(248,\cdot)\)
  \(\chi_{445}(293,\cdot)\)
  \(\chi_{445}(298,\cdot)\)
  \(\chi_{445}(318,\cdot)\)
  \(\chi_{445}(332,\cdot)\)
  \(\chi_{445}(342,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((357,181)\) → \((i,e\left(\frac{65}{88}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | 
    
    
      | \( \chi_{ 445 }(137, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{43}{88}\right)\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{49}{88}\right)\) | \(e\left(\frac{7}{88}\right)\) | \(e\left(\frac{9}{44}\right)\) | \(e\left(\frac{43}{44}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{65}{88}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)