Properties

Label 445.137
Modulus $445$
Conductor $445$
Order $88$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(445, base_ring=CyclotomicField(88)) M = H._module chi = DirichletCharacter(H, M([22,65]))
 
Copy content pari:[g,chi] = znchar(Mod(137,445))
 

Basic properties

Modulus: \(445\)
Conductor: \(445\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(88\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 445.ba

\(\chi_{445}(7,\cdot)\) \(\chi_{445}(13,\cdot)\) \(\chi_{445}(38,\cdot)\) \(\chi_{445}(58,\cdot)\) \(\chi_{445}(63,\cdot)\) \(\chi_{445}(82,\cdot)\) \(\chi_{445}(92,\cdot)\) \(\chi_{445}(108,\cdot)\) \(\chi_{445}(112,\cdot)\) \(\chi_{445}(117,\cdot)\) \(\chi_{445}(118,\cdot)\) \(\chi_{445}(122,\cdot)\) \(\chi_{445}(132,\cdot)\) \(\chi_{445}(137,\cdot)\) \(\chi_{445}(143,\cdot)\) \(\chi_{445}(148,\cdot)\) \(\chi_{445}(163,\cdot)\) \(\chi_{445}(172,\cdot)\) \(\chi_{445}(192,\cdot)\) \(\chi_{445}(193,\cdot)\) \(\chi_{445}(202,\cdot)\) \(\chi_{445}(208,\cdot)\) \(\chi_{445}(213,\cdot)\) \(\chi_{445}(238,\cdot)\) \(\chi_{445}(248,\cdot)\) \(\chi_{445}(293,\cdot)\) \(\chi_{445}(298,\cdot)\) \(\chi_{445}(318,\cdot)\) \(\chi_{445}(332,\cdot)\) \(\chi_{445}(342,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{88})$
Fixed field: Number field defined by a degree 88 polynomial

Values on generators

\((357,181)\) → \((i,e\left(\frac{65}{88}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 445 }(137, a) \) \(1\)\(1\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{43}{88}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{49}{88}\right)\)\(e\left(\frac{7}{88}\right)\)\(e\left(\frac{9}{44}\right)\)\(e\left(\frac{43}{44}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{65}{88}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 445 }(137,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 445 }(137,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 445 }(137,·),\chi_{ 445 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 445 }(137,·)) \;\) at \(\; a,b = \) e.g. 1,2