Properties

Label 425.252
Modulus $425$
Conductor $425$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([4,45]))
 
Copy content pari:[g,chi] = znchar(Mod(252,425))
 

Basic properties

Modulus: \(425\)
Conductor: \(425\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 425.bg

\(\chi_{425}(12,\cdot)\) \(\chi_{425}(22,\cdot)\) \(\chi_{425}(23,\cdot)\) \(\chi_{425}(28,\cdot)\) \(\chi_{425}(37,\cdot)\) \(\chi_{425}(58,\cdot)\) \(\chi_{425}(78,\cdot)\) \(\chi_{425}(97,\cdot)\) \(\chi_{425}(108,\cdot)\) \(\chi_{425}(113,\cdot)\) \(\chi_{425}(122,\cdot)\) \(\chi_{425}(163,\cdot)\) \(\chi_{425}(167,\cdot)\) \(\chi_{425}(192,\cdot)\) \(\chi_{425}(198,\cdot)\) \(\chi_{425}(228,\cdot)\) \(\chi_{425}(248,\cdot)\) \(\chi_{425}(252,\cdot)\) \(\chi_{425}(267,\cdot)\) \(\chi_{425}(277,\cdot)\) \(\chi_{425}(278,\cdot)\) \(\chi_{425}(283,\cdot)\) \(\chi_{425}(292,\cdot)\) \(\chi_{425}(313,\cdot)\) \(\chi_{425}(333,\cdot)\) \(\chi_{425}(337,\cdot)\) \(\chi_{425}(352,\cdot)\) \(\chi_{425}(362,\cdot)\) \(\chi_{425}(363,\cdot)\) \(\chi_{425}(377,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((52,326)\) → \((e\left(\frac{1}{20}\right),e\left(\frac{9}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 425 }(252, a) \) \(1\)\(1\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{73}{80}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{67}{80}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{33}{40}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{61}{80}\right)\)\(e\left(\frac{1}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 425 }(252,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 425 }(252,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 425 }(252,·),\chi_{ 425 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 425 }(252,·)) \;\) at \(\; a,b = \) e.g. 1,2