sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4235, base_ring=CyclotomicField(330))
M = H._module
chi = DirichletCharacter(H, M([165,275,177]))
pari:[g,chi] = znchar(Mod(4219,4235))
| Modulus: | \(4235\) | |
| Conductor: | \(4235\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(330\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4235}(19,\cdot)\)
\(\chi_{4235}(24,\cdot)\)
\(\chi_{4235}(129,\cdot)\)
\(\chi_{4235}(194,\cdot)\)
\(\chi_{4235}(299,\cdot)\)
\(\chi_{4235}(304,\cdot)\)
\(\chi_{4235}(369,\cdot)\)
\(\chi_{4235}(404,\cdot)\)
\(\chi_{4235}(409,\cdot)\)
\(\chi_{4235}(479,\cdot)\)
\(\chi_{4235}(514,\cdot)\)
\(\chi_{4235}(579,\cdot)\)
\(\chi_{4235}(684,\cdot)\)
\(\chi_{4235}(689,\cdot)\)
\(\chi_{4235}(754,\cdot)\)
\(\chi_{4235}(789,\cdot)\)
\(\chi_{4235}(794,\cdot)\)
\(\chi_{4235}(864,\cdot)\)
\(\chi_{4235}(899,\cdot)\)
\(\chi_{4235}(964,\cdot)\)
\(\chi_{4235}(1069,\cdot)\)
\(\chi_{4235}(1074,\cdot)\)
\(\chi_{4235}(1139,\cdot)\)
\(\chi_{4235}(1174,\cdot)\)
\(\chi_{4235}(1179,\cdot)\)
\(\chi_{4235}(1249,\cdot)\)
\(\chi_{4235}(1284,\cdot)\)
\(\chi_{4235}(1349,\cdot)\)
\(\chi_{4235}(1454,\cdot)\)
\(\chi_{4235}(1459,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2542,1816,2906)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{59}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
| \( \chi_{ 4235 }(4219, a) \) |
\(1\) | \(1\) | \(e\left(\frac{116}{165}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{67}{165}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{19}{110}\right)\) | \(e\left(\frac{134}{165}\right)\) | \(e\left(\frac{203}{330}\right)\) |
sage:chi.jacobi_sum(n)