sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(780))
M = H._module
chi = DirichletCharacter(H, M([39,365]))
pari:[g,chi] = znchar(Mod(977,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(780\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(2,\cdot)\)
\(\chi_{4225}(33,\cdot)\)
\(\chi_{4225}(63,\cdot)\)
\(\chi_{4225}(67,\cdot)\)
\(\chi_{4225}(97,\cdot)\)
\(\chi_{4225}(98,\cdot)\)
\(\chi_{4225}(128,\cdot)\)
\(\chi_{4225}(162,\cdot)\)
\(\chi_{4225}(163,\cdot)\)
\(\chi_{4225}(197,\cdot)\)
\(\chi_{4225}(227,\cdot)\)
\(\chi_{4225}(228,\cdot)\)
\(\chi_{4225}(262,\cdot)\)
\(\chi_{4225}(292,\cdot)\)
\(\chi_{4225}(323,\cdot)\)
\(\chi_{4225}(327,\cdot)\)
\(\chi_{4225}(358,\cdot)\)
\(\chi_{4225}(388,\cdot)\)
\(\chi_{4225}(392,\cdot)\)
\(\chi_{4225}(422,\cdot)\)
\(\chi_{4225}(423,\cdot)\)
\(\chi_{4225}(453,\cdot)\)
\(\chi_{4225}(487,\cdot)\)
\(\chi_{4225}(522,\cdot)\)
\(\chi_{4225}(552,\cdot)\)
\(\chi_{4225}(553,\cdot)\)
\(\chi_{4225}(583,\cdot)\)
\(\chi_{4225}(617,\cdot)\)
\(\chi_{4225}(648,\cdot)\)
\(\chi_{4225}(652,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{20}\right),e\left(\frac{73}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(977, a) \) |
\(1\) | \(1\) | \(e\left(\frac{101}{195}\right)\) | \(e\left(\frac{293}{780}\right)\) | \(e\left(\frac{7}{195}\right)\) | \(e\left(\frac{697}{780}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{36}{65}\right)\) | \(e\left(\frac{293}{390}\right)\) | \(e\left(\frac{779}{780}\right)\) | \(e\left(\frac{107}{260}\right)\) | \(e\left(\frac{109}{130}\right)\) |
sage:chi.jacobi_sum(n)