sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(260))
M = H._module
chi = DirichletCharacter(H, M([156,15]))
pari:[g,chi] = znchar(Mod(2371,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(260\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(21,\cdot)\)
\(\chi_{4225}(31,\cdot)\)
\(\chi_{4225}(86,\cdot)\)
\(\chi_{4225}(96,\cdot)\)
\(\chi_{4225}(161,\cdot)\)
\(\chi_{4225}(216,\cdot)\)
\(\chi_{4225}(281,\cdot)\)
\(\chi_{4225}(291,\cdot)\)
\(\chi_{4225}(346,\cdot)\)
\(\chi_{4225}(356,\cdot)\)
\(\chi_{4225}(411,\cdot)\)
\(\chi_{4225}(421,\cdot)\)
\(\chi_{4225}(486,\cdot)\)
\(\chi_{4225}(541,\cdot)\)
\(\chi_{4225}(616,\cdot)\)
\(\chi_{4225}(671,\cdot)\)
\(\chi_{4225}(681,\cdot)\)
\(\chi_{4225}(736,\cdot)\)
\(\chi_{4225}(811,\cdot)\)
\(\chi_{4225}(866,\cdot)\)
\(\chi_{4225}(931,\cdot)\)
\(\chi_{4225}(941,\cdot)\)
\(\chi_{4225}(996,\cdot)\)
\(\chi_{4225}(1006,\cdot)\)
\(\chi_{4225}(1061,\cdot)\)
\(\chi_{4225}(1071,\cdot)\)
\(\chi_{4225}(1136,\cdot)\)
\(\chi_{4225}(1191,\cdot)\)
\(\chi_{4225}(1256,\cdot)\)
\(\chi_{4225}(1266,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{3}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(2371, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{171}{260}\right)\) | \(e\left(\frac{23}{65}\right)\) | \(e\left(\frac{41}{130}\right)\) | \(e\left(\frac{3}{260}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{253}{260}\right)\) | \(e\left(\frac{46}{65}\right)\) | \(e\left(\frac{141}{260}\right)\) | \(e\left(\frac{87}{130}\right)\) | \(e\left(\frac{54}{65}\right)\) |
sage:chi.jacobi_sum(n)