sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(130))
M = H._module
chi = DirichletCharacter(H, M([78,125]))
pari:[g,chi] = znchar(Mod(3821,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(130\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(116,\cdot)\)
\(\chi_{4225}(181,\cdot)\)
\(\chi_{4225}(246,\cdot)\)
\(\chi_{4225}(311,\cdot)\)
\(\chi_{4225}(441,\cdot)\)
\(\chi_{4225}(571,\cdot)\)
\(\chi_{4225}(636,\cdot)\)
\(\chi_{4225}(766,\cdot)\)
\(\chi_{4225}(831,\cdot)\)
\(\chi_{4225}(896,\cdot)\)
\(\chi_{4225}(961,\cdot)\)
\(\chi_{4225}(1091,\cdot)\)
\(\chi_{4225}(1156,\cdot)\)
\(\chi_{4225}(1221,\cdot)\)
\(\chi_{4225}(1286,\cdot)\)
\(\chi_{4225}(1416,\cdot)\)
\(\chi_{4225}(1481,\cdot)\)
\(\chi_{4225}(1546,\cdot)\)
\(\chi_{4225}(1611,\cdot)\)
\(\chi_{4225}(1741,\cdot)\)
\(\chi_{4225}(1806,\cdot)\)
\(\chi_{4225}(1871,\cdot)\)
\(\chi_{4225}(1936,\cdot)\)
\(\chi_{4225}(2066,\cdot)\)
\(\chi_{4225}(2131,\cdot)\)
\(\chi_{4225}(2261,\cdot)\)
\(\chi_{4225}(2391,\cdot)\)
\(\chi_{4225}(2456,\cdot)\)
\(\chi_{4225}(2521,\cdot)\)
\(\chi_{4225}(2586,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{5}\right),e\left(\frac{25}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(3821, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{130}\right)\) | \(e\left(\frac{28}{65}\right)\) | \(e\left(\frac{8}{65}\right)\) | \(e\left(\frac{129}{130}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{89}{130}\right)\) | \(e\left(\frac{56}{65}\right)\) | \(e\left(\frac{83}{130}\right)\) | \(e\left(\frac{36}{65}\right)\) | \(e\left(\frac{29}{65}\right)\) |
sage:chi.jacobi_sum(n)