sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(130))
M = H._module
chi = DirichletCharacter(H, M([13,95]))
pari:[g,chi] = znchar(Mod(2079,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(130\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(64,\cdot)\)
\(\chi_{4225}(129,\cdot)\)
\(\chi_{4225}(194,\cdot)\)
\(\chi_{4225}(259,\cdot)\)
\(\chi_{4225}(389,\cdot)\)
\(\chi_{4225}(454,\cdot)\)
\(\chi_{4225}(519,\cdot)\)
\(\chi_{4225}(584,\cdot)\)
\(\chi_{4225}(714,\cdot)\)
\(\chi_{4225}(779,\cdot)\)
\(\chi_{4225}(909,\cdot)\)
\(\chi_{4225}(1039,\cdot)\)
\(\chi_{4225}(1104,\cdot)\)
\(\chi_{4225}(1169,\cdot)\)
\(\chi_{4225}(1234,\cdot)\)
\(\chi_{4225}(1364,\cdot)\)
\(\chi_{4225}(1429,\cdot)\)
\(\chi_{4225}(1494,\cdot)\)
\(\chi_{4225}(1559,\cdot)\)
\(\chi_{4225}(1754,\cdot)\)
\(\chi_{4225}(1819,\cdot)\)
\(\chi_{4225}(1884,\cdot)\)
\(\chi_{4225}(2014,\cdot)\)
\(\chi_{4225}(2079,\cdot)\)
\(\chi_{4225}(2144,\cdot)\)
\(\chi_{4225}(2209,\cdot)\)
\(\chi_{4225}(2339,\cdot)\)
\(\chi_{4225}(2404,\cdot)\)
\(\chi_{4225}(2469,\cdot)\)
\(\chi_{4225}(2664,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{19}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(2079, a) \) |
\(1\) | \(1\) | \(e\left(\frac{54}{65}\right)\) | \(e\left(\frac{41}{130}\right)\) | \(e\left(\frac{43}{65}\right)\) | \(e\left(\frac{19}{130}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{32}{65}\right)\) | \(e\left(\frac{41}{65}\right)\) | \(e\left(\frac{113}{130}\right)\) | \(e\left(\frac{127}{130}\right)\) | \(e\left(\frac{34}{65}\right)\) |
sage:chi.jacobi_sum(n)