sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(130))
M = H._module
chi = DirichletCharacter(H, M([117,20]))
pari:[g,chi] = znchar(Mod(1769,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(130\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(14,\cdot)\)
\(\chi_{4225}(79,\cdot)\)
\(\chi_{4225}(144,\cdot)\)
\(\chi_{4225}(209,\cdot)\)
\(\chi_{4225}(404,\cdot)\)
\(\chi_{4225}(469,\cdot)\)
\(\chi_{4225}(534,\cdot)\)
\(\chi_{4225}(664,\cdot)\)
\(\chi_{4225}(729,\cdot)\)
\(\chi_{4225}(794,\cdot)\)
\(\chi_{4225}(859,\cdot)\)
\(\chi_{4225}(989,\cdot)\)
\(\chi_{4225}(1054,\cdot)\)
\(\chi_{4225}(1119,\cdot)\)
\(\chi_{4225}(1314,\cdot)\)
\(\chi_{4225}(1379,\cdot)\)
\(\chi_{4225}(1444,\cdot)\)
\(\chi_{4225}(1509,\cdot)\)
\(\chi_{4225}(1639,\cdot)\)
\(\chi_{4225}(1704,\cdot)\)
\(\chi_{4225}(1769,\cdot)\)
\(\chi_{4225}(1834,\cdot)\)
\(\chi_{4225}(1964,\cdot)\)
\(\chi_{4225}(2094,\cdot)\)
\(\chi_{4225}(2159,\cdot)\)
\(\chi_{4225}(2289,\cdot)\)
\(\chi_{4225}(2354,\cdot)\)
\(\chi_{4225}(2419,\cdot)\)
\(\chi_{4225}(2484,\cdot)\)
\(\chi_{4225}(2614,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{2}{13}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(1769, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{130}\right)\) | \(e\left(\frac{49}{130}\right)\) | \(e\left(\frac{7}{65}\right)\) | \(e\left(\frac{28}{65}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{21}{130}\right)\) | \(e\left(\frac{49}{65}\right)\) | \(e\left(\frac{16}{65}\right)\) | \(e\left(\frac{63}{130}\right)\) | \(e\left(\frac{1}{65}\right)\) |
sage:chi.jacobi_sum(n)